Table of Contents
Asian Journal of Neuroscience
Volume 2013, Article ID 102602, 18 pages
http://dx.doi.org/10.1155/2013/102602
Review Article

Renin Angiotensin System in Cognitive Function and Dementia

1Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh 522 001, India
2Department of Biochemistry, Kakatiya University, Vidyaranyapuri, Warangal, Andhra Pradesh 506 009, India

Received 20 July 2013; Accepted 13 August 2013

Academic Editors: Y. Kuroiwa, K. S. J. Rao, and H. Tokuno

Copyright © 2013 Vijaya Lakshmi Bodiga and Sreedhar Bodiga. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Petersen, “Aging, mild cognitive impairment, and Alzheimer's disease,” Neurologic Clinics, vol. 18, no. 4, pp. 789–805, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. P. J. Whitehouse, C. G. Sciulli, and R. M. Mason, “Dementia drug development: use of information systems to harmonize global drug development,” Psychopharmacology Bulletin, vol. 33, no. 1, pp. 129–133, 1997. View at Google Scholar · View at Scopus
  3. A. Cherubini, D. T. Lowenthal, E. Paran, P. Mecocci, L. S. Williams, and U. Senin, “Hypertension and cognitive function in the elderly,” American Journal of Therapeutics, vol. 14, no. 6, pp. 533–554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Del Parigi, F. Panza, C. Capurso, and V. Solfrizzi, “Nutritional factors, cognitive decline, and dementia,” Brain Research Bulletin, vol. 69, no. 1, pp. 1–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Andel, T. F. Hughes, and M. Crowe, “Strategies to reduce the risk of cognitive decline and dementia,” Aging Health, vol. 1, pp. 107–116, 2005. View at Google Scholar
  6. F. M. Faraci and D. D. Heistad, “Regulation of large cerebral arteries and cerebral microsvascular pressure,” Circulation Research, vol. 66, no. 1, pp. 8–17, 1990. View at Google Scholar · View at Scopus
  7. Y. Nishimura, T. Ito, and J. M. Saavedra, “Angiotensin II AT1 blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats,” Stroke, vol. 31, no. 10, pp. 2478–2486, 2000. View at Google Scholar · View at Scopus
  8. P. V. Vaitkevicius, J. L. Fleg, J. H. Engel et al., “Effects of age and aerobic capacity on arterial stiffness in healthy adults,” Circulation, vol. 88, no. 4 I, pp. 1456–1462, 1993. View at Google Scholar · View at Scopus
  9. R. W. Alexander, “Hypertension and the pathogenesis of atherosclerosis: oxidative stress and the mediation of arterial inflammatory response: a new perspective,” Hypertension, vol. 25, no. 2, pp. 155–161, 1995. View at Google Scholar · View at Scopus
  10. S. Phillips and J. Whisnant, “Hypertension and stroke,” in Hypertension: Pathophysiology, Diagnosis, and Management, J. Laragh and B. Brenner, Eds., pp. 417–431, Raven Press, New York, NY, USA, 2nd edition, 1990. View at Google Scholar
  11. S. Strandgaard and O. B. Paulson, “Cerebrovascular consequences of hypertension,” The Lancet, vol. 344, no. 8921, pp. 519–521, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. M. I. Phillips and E. M. De Oliveira, “Brain renin angiotensin in disease,” Journal of Molecular Medicine, vol. 86, no. 6, pp. 715–722, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Savaskan, “The role of the brain renin-angiotensin system in neurodegenerative disorders,” Current Alzheimer Research, vol. 2, no. 1, pp. 29–35, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. L. A. Cassis, J. Saye, and M. J. Peach, “Location and regulation of rat angiotensinogen messenger RNA,” Hypertension, vol. 11, no. 6, pp. 591–596, 1988. View at Google Scholar · View at Scopus
  15. V. J. Dzau, J. Ingelfinger, R. E. Pratt, and K. E. Ellison, “Identification of renin and angiotensinogen messenger RNA sequences in mouse and rat brains,” Hypertension, vol. 8, no. 6, pp. 544–548, 1986. View at Google Scholar · View at Scopus
  16. J. L. Lavoie, M. D. Cassell, K. W. Gross, and C. D. Sigmund, “Localization of renin expressing cells in the brain, by use of a REN-eGFP transgenic model,” Physiological Genomics, vol. 16, pp. 240–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. Lavoie, M. D. Cassell, K. W. Gross, and C. D. Sigmund, “Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual-reporter transgenic model,” Hypertension, vol. 43, no. 5, pp. 1116–1119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Lee-Kirsch, F. Gaudet, M. C. Cardoso, and K. Lindpaintner, “Distinct renin isoforms generated by tissue-specific transcription initiation and alternative splicing,” Circulation Research, vol. 84, no. 2, pp. 240–246, 1999. View at Google Scholar · View at Scopus
  19. C. Fischer-Ferraro, V. E. Nahmod, D. J. Goldstein, and S. Finkielman, “Angiotensin and renin in rat and dog brain,” Journal of Experimental Medicine, vol. 133, no. 2, pp. 353–361, 1971. View at Google Scholar · View at Scopus
  20. E. T. Ben-Ari and J. C. Garrison, “Regulation of angiotensinogen mRNA accumulation in rat hepatocytes,” American Journal of Physiology, vol. 255, no. 1, pp. E70–E79, 1988. View at Google Scholar · View at Scopus
  21. C. F. Deschepper, J. Bouhnik, and W. F. Ganong, “Colocalization of angiotensinogen and glial fibrillary acidic protein in astrocytes in rat brain,” Brain Research, vol. 374, no. 1, pp. 195–198, 1986. View at Google Scholar · View at Scopus
  22. P. Sandor and W. de Jong, “Brain peptides and catecholamines in cardiovascular regulation,” in Brain Peptides and Catecholamines in Cardiovascular Regulation, J. P. Buckley and C. M. Ferrario, Eds., p. 185, Raven Press, New York, NY, USA, 1987. View at Google Scholar
  23. D. I. Diz, “Approaches to establishing angiotensin II as a neurotransmitter revisited,” Hypertension, vol. 47, no. 3, pp. 334–336, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. R. W. Lind, L. W. Swanson, and D. Ganten, “Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study,” Neuroendocrinology, vol. 40, no. 1, pp. 2–24, 1985. View at Google Scholar · View at Scopus
  25. M. Paul, M. P. Printz, and E. Harms, “Localization of renin (EC 3.4.23) and converting enzyme (EC 3.4.15.1) in nerve endings of rat brain,” Brain Research, vol. 334, no. 2, pp. 315–324, 1985. View at Publisher · View at Google Scholar · View at Scopus
  26. K. E. Bernstein, B. M. Martin, A. S. Edwards, and E. A. Bernstein, “Mouse angiotensin-converting enzyme is a protein composed of two homologous domains,” Journal of Biological Chemistry, vol. 264, no. 20, pp. 11945–11951, 1989. View at Google Scholar · View at Scopus
  27. V. Beldent, A. Michaud, C. Bonnefoy, M.-T. Chauvet, and P. Corvol, “Cell surface localization of proteolysis of human endothelial angiotensin I-converting enzyme. Effect of the amino-terminal domain in the solubilization process,” Journal of Biological Chemistry, vol. 270, no. 48, pp. 28962–28969, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. I. A. Reid, B. J. Morris, and W. F. Ganong, “The renin-angiotensin system,” Annual Review of Physiology, vol. 40, pp. 377–410, 1978. View at Google Scholar · View at Scopus
  29. M. I. Phillips, “Functions of angiotensin in the central nervous system,” Annual Review of Physiology, vol. 49, pp. 413–435, 1987. View at Google Scholar · View at Scopus
  30. A. Kuoppala, K. A. Lindstedt, J. Saarinen, P. T. Kovanen, and J. O. Kokkonen, “Inactivation of bradykinin by angiotensin-converting enzyme and by carboxypeptidase N in human plasma,” American Journal of Physiology, vol. 278, no. 4, pp. H1069–H1074, 2000. View at Google Scholar · View at Scopus
  31. R. L. Davisson, M. I. Oliverio, T. M. Coffman, and C. D. Sigmund, “Divergent functions of angiotensin II receptor isoforms in the brain,” Journal of Clinical Investigation, vol. 106, no. 1, pp. 103–106, 2000. View at Google Scholar · View at Scopus
  32. R. M. Carey, “Cardiovascular and renal regulation by the angiotensin type 2 receptor: the AT2 receptor comes of age,” Hypertension, vol. 45, no. 5, pp. 840–844, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. R. M. Carey and S. H. Padia, “Angiotensin AT2 receptors: control of renal sodium excretion and blood pressure,” Trends in Endocrinology and Metabolism, vol. 19, no. 3, pp. 84–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Gao, W. Wang, W. Wang, H. Li, C. Sumners, and I. H. Zucker, “Effects of angiotensin type 2 receptor overexpression in the rostral ventrolateral medulla on blood pressure and urine excretion in normal rats,” Hypertension, vol. 51, no. 2, pp. 521–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. V. J. Dzau, “Cell biology and genetics of angiotensin in cardiovascular disease,” Journal of Hypertension, vol. 12, no. 4, supplement, pp. S3–S10, 1994. View at Google Scholar · View at Scopus
  36. R. K. Bickerton and J. P. Buckley, “Evidence for a central mechanism in angiotensin induced hypertension,” in Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine, pp. 834–836, Royal Society of Medicine, New York, NY, USA, 1961.
  37. A. N. Epstein, J. T. Fitzsimons, and B. J. Rolls, “Drinking induced by injection of angiotensin into the rain of the rat,” Journal of Physiology, vol. 210, no. 2, pp. 457–474, 1970. View at Google Scholar · View at Scopus
  38. D. Ganten, A. Marquez-Julio, P. Granger et al., “Renin in dog brain,” The American Journal of Physiology, vol. 221, no. 6, pp. 1733–1737, 1971. View at Google Scholar · View at Scopus
  39. D. R. Gehlert, S. L. Gackenheimer, and D. A. Schober, “Autoradiographic localization of subtypes of angiotensin II antagonist binding in the rat brain,” Neuroscience, vol. 44, no. 2, pp. 501–514, 1991. View at Publisher · View at Google Scholar · View at Scopus
  40. O. Johren, T. Inagami, and J. M. Saavedra, “AT(1A), AT(1B), and AT2 angiotensin II receptor subtype gene expression in rat brain,” NeuroReport, vol. 6, no. 18, pp. 2549–2552, 1995. View at Google Scholar · View at Scopus
  41. D. R. Gehlert, R. C. Speth, and J. K. Wamsley, “Distribution of [125I]angiotensin II binding sites in the rat brain: a quantitative autoradiographic study,” Neuroscience, vol. 18, no. 4, pp. 837–856, 1986. View at Google Scholar · View at Scopus
  42. O. Jöhren, T. Inagami, and J. M. Saavedra, “Localization of AT2 angiotensin II receptor gene expression in rat brain by in situ hybridization histochemistry,” Molecular Brain Research, vol. 37, no. 1-2, pp. 192–200, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Lenkei, M. Palkovits, P. Corvol, and C. Llorens-Cortes, “Distribution of angiotensin II type-2 receptor (AT2) mRNA expression in the adult rat brain,” Journal of Comparative Neurology, vol. 373, pp. 322–339, 1996. View at Google Scholar
  44. M. I. Phillips, L. Shen, E. M. Richards, and M. K. Raizada, “Immunohistochemical mapping of angiotensin AT1 receptors in the brain,” Regulatory Peptides, vol. 44, no. 2, pp. 95–107, 1993. View at Publisher · View at Google Scholar · View at Scopus
  45. L. P. Reagan, L. M. Flanagan-Cato, D. K. Yee, L.-Y. Ma, R. R. Sakai, and S. J. Fluharty, “Immunohistochemical mapping of angiotensin type 2 (AT2) receptors in rat brain,” Brain Research, vol. 662, no. 1-2, pp. 45–59, 1994. View at Publisher · View at Google Scholar · View at Scopus
  46. N. E. Sirett, A. S. McLean, J. J. Bray, and J. I. Hubbard, “Distribution of angiotensin II receptors in rat brain,” Brain Research, vol. 122, no. 2, pp. 299–312, 1977. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Song, A. M. Allen, G. Paxinos, and F. A. O. Mendelsohn, “Mapping of angiotensin II receptor subtype heterogeneity in rat brain,” Journal of Comparative Neurology, vol. 316, no. 4, pp. 467–484, 1992. View at Google Scholar · View at Scopus
  48. W. Häuser, O. Jöhren, and J. M. Saavedra, “Characterization and distribution of angiotensin II receptor subtypes in the mouse brain,” European Journal of Pharmacology, vol. 348, no. 1, pp. 101–114, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. O. Jöhren, H. Imboden, W. Häuser, I. Maye, G. L. Sanvitto, and J. M. Saavedra, “Localization of angiotensin-converting enzyme, angiotensin II, angiotensin II receptor subtypes, and vasopressin in the mouse hypothalamus,” Brain Research, vol. 757, no. 2, pp. 218–227, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. Z. Lenkei, M. Palkovits, P. Corvol, and C. Llorens-Cortès, “Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review,” Frontiers in Neuroendocrinology, vol. 18, no. 4, pp. 383–439, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. D. F. Story and J. Ziogas, “Interaction of angiotensin with noradrenergic neuroeffector transmission,” Trends in Pharmacological Sciences, vol. 8, no. 7, pp. 269–271, 1987. View at Google Scholar · View at Scopus
  52. P. R. Saxena, “Interaction between the renin-angiotensin-aldosterone and sympathetic nervous systems,” Journal of Cardiovascular Pharmacology, vol. 19, no. 6, pp. S80–S88, 1992. View at Google Scholar · View at Scopus
  53. G. Giacchetti, G. Opocher, R. Sarzani, A. Rappelli, and F. Mantero, “Angiotensin II and the adrenal,” Clinical and Experimental Pharmacology and Physiology, vol. 23, no. 3, supplement, pp. S119–S124, 1996. View at Google Scholar · View at Scopus
  54. G. Aguilera and A. Kiss, “Regulation of the hypothalmic-pituitary-adrenal axis and vasopressin secretion: role of angiotensin II,” Advances in Experimental Medicine and Biology, vol. 396, pp. 105–112, 1996. View at Google Scholar · View at Scopus
  55. J. Culman, S. Hohle, F. Qadri et al., “Angiotensin as neuromodulator/neurotransmitter in central control of body fluid and electrolyte homeostasis,” Clinical and Experimental Hypertension, vol. 17, no. 1-2, pp. 281–293, 1995. View at Google Scholar · View at Scopus
  56. H. Urata, H. Nishimura, and D. Ganten, “Mechanisms of angiotensin II formation in humans,” European Heart Journal, vol. 16, pp. 79–85, 1995. View at Google Scholar · View at Scopus
  57. H. Urata, H. Nishimura, D. Ganten, and K. Arakawa, “Angiotensin-converting enzyme-independent pathways of angiotensin II formation in human tissues and cardiovascular diseases,” Blood Pressure, Supplement, vol. 5, no. 2, pp. 22–28, 1996. View at Google Scholar · View at Scopus
  58. P. Schelling, J. S. Hutchinson, and U. Ganten, “Impermeability of the blood cerebrospinal fluid barrier for angiotensin II in rats,” Clinical Science and Molecular Medicine, vol. 51, no. 3, supplement, pp. 399–402, 1976. View at Google Scholar · View at Scopus
  59. H. M. Duvernoy and P.-Y. Risold, “The circumventricular organs: an atlas of comparative anatomy and vascularization,” Brain Research Reviews, vol. 56, no. 1, pp. 119–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. A. K. Johnson and P. M. Gross, “Sensory circumventricular organs and brain homeostatic pathways,” FASEB Journal, vol. 7, no. 8, pp. 678–686, 1993. View at Google Scholar · View at Scopus
  61. J. B. Simpson, “The circumventricular organs and the central actions of angiotensin,” Neuroendocrinology, vol. 32, no. 4, pp. 248–256, 1981. View at Google Scholar · View at Scopus
  62. J. M. Saavedra, “Brain and pituitary angiotensin,” Endocrine Reviews, vol. 13, no. 2, pp. 329–380, 1992. View at Publisher · View at Google Scholar · View at Scopus
  63. J. M. Saavedra, “Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities,” Cellular and Molecular Neurobiology, vol. 25, no. 3-4, pp. 485–512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. J. M. Saavedra, H. Ando, I. Armando et al., “Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists,” Regulatory Peptides, vol. 128, no. 3, pp. 227–238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Yanai, T. Saito, Y. Kakinuma et al., “Renin-dependent cardiovascular functions and renin-independent blood-brain barrier functions revealed by renin-deficient mice,” Journal of Biological Chemistry, vol. 275, no. 1, pp. 5–8, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Kakinuma, H. Hama, F. Sugiyama et al., “Impaired blood-brain barrier function in angiotensinogen-deficient mice,” Nature Medicine, vol. 4, no. 9, pp. 1078–1080, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. J. M. Rose and K. L. Audus, “At1 receptors mediate angiotensin II uptake and transport by bovine brain microvessel endothelial cells in primary culture,” Journal of Cardiovascular Pharmacology, vol. 33, no. 1, pp. 30–35, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. J. W. Harding, M. J. Sullivan, J. M. Hanesworth, L. L. Cushing, and J. W. Wright, “Inability of [125I]Sar1,Ile8-angiotensin II to move between the blood and cerebrospinal fluid compartments,” Journal of Neurochemistry, vol. 50, no. 2, pp. 554–557, 1988. View at Google Scholar · View at Scopus
  69. J. Monti, M. Schinke, M. Böhm, D. Ganten, M. Bader, and G. Bricca, “Glial angiotensinogen regulates brain angiotensin II receptors in transgenic rats TGR(ASrAOGE),” American Journal of Physiology, vol. 280, no. 1, pp. R233–R240, 2001. View at Google Scholar · View at Scopus
  70. A. Réaux, N. De Mota, S. Zini et al., “PC18, a specific aminopeptidase N inhibitor, induces vasopressin release by increasing the half-life of brain Angiotensin III,” Neuroendocrinology, vol. 69, no. 5, pp. 370–376, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Reaux, M. C. Fournie-Zaluski, C. David et al., “Aminopeptidase A inhibitors as potential central antihypertensive agents,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13415–13420, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Zini, M.-C. Fournie-Zaluski, E. Chauvel, B. P. Roques, P. Corvol, and C. Llorens-Cortes, “Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 21, pp. 11968–11973, 1996. View at Publisher · View at Google Scholar · View at Scopus
  73. G. N. Swanson, J. M. Hanesworth, M. F. Sardinia et al., “Discovery of a distinct binding site for angiotensin II (3–8), a putative angiotensin IV receptor,” Regulatory Peptides, vol. 40, no. 3, pp. 409–419, 1992. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Y. Chai, M. A. Bastias, E. F. Clune et al., “Distribution of angiotensin IV binding sites (AT4 receptor) in the human forebrain, midbrain and pons as visualised by in vitro receptor autoradiography,” Journal of Chemical Neuroanatomy, vol. 20, no. 3-4, pp. 339–348, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. A. V. Miller-Wing, J. M. Hanesworth, M. F. Sardinia et al., “Central angiotensin IV binding sites: distribution and specificity in guinea pig brain,” Journal of Pharmacology and Experimental Therapeutics, vol. 266, no. 3, pp. 1718–1726, 1993. View at Google Scholar · View at Scopus
  76. I. Moeller, S. Y. Chai, B. J. Oldfield, M. J. McKinley, D. Casley, and F. A. O. Mendelsohn, “Localization of angiotensin IV binding sites to motor and sensory neurons in the sheep spinal cord and hindbrain,” Brain Research, vol. 701, no. 1-2, pp. 301–306, 1995. View at Publisher · View at Google Scholar · View at Scopus
  77. I. Moeller, G. Paxinos, F. A. O. Mendelsohn, G. P. Aldred, D. Casley, and S. Y. Chai, “Distribution of AT4 receptors in the Macaca fascicularis brain,” Brain Research, vol. 712, no. 2, pp. 307–324, 1996. View at Publisher · View at Google Scholar · View at Scopus
  78. K. A. Roberts, L. T. Krebs, E. A. Kramar, M. J. Shaffer, J. W. Harding, and J. W. Wright, “Autoradiographic identification of brain angiotensin IV binding sites and differential c-Fos expression following intracerebroventricular injection of angiotensin II and IV in rats,” Brain Research, vol. 682, no. 1-2, pp. 13–21, 1995. View at Publisher · View at Google Scholar · View at Scopus
  79. A. L. Albiston, S. G. McDowall, D. Matsacos et al., “Evidence that the angiotensin IV (AT4) receptor is the enzyme insulin-regulated aminopeptidase,” Journal of Biological Chemistry, vol. 276, no. 52, pp. 48623–48626, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. S. R. Tipnis, N. M. Hooper, R. Hyde, E. Karran, G. Christie, and A. J. Turner, “A human homolog of angiotensin-converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase,” Journal of Biological Chemistry, vol. 275, no. 43, pp. 33238–33243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. A. J. Turner, S. R. Tipnis, J. L. Guy, G. I. Rice, and N. M. Hooper, “ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors,” Canadian Journal of Physiology and Pharmacology, vol. 80, no. 4, pp. 346–353, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Vickers, P. Hales, V. Kaushik et al., “Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase,” Journal of Biological Chemistry, vol. 277, no. 17, pp. 14838–14843, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Donoghue, F. Hsieh, E. Baronas et al., “A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9,” Circulation Research, vol. 87, no. 5, pp. E1–9, 2000. View at Google Scholar · View at Scopus
  84. F. Gembardt, A. Sterner-Kock, H. Imboden et al., “Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents,” Peptides, vol. 26, no. 7, pp. 1270–1277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. D. Harmer, M. Gilbert, R. Borman, and K. L. Clark, “Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme,” FEBS Letters, vol. 532, no. 1-2, pp. 107–110, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. I. Hamming, W. Timens, M. L. C. Bulthuis, A. T. Lely, G. J. Navis, and H. van Goor, “Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis,” Journal of Pathology, vol. 203, no. 2, pp. 631–637, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. P. E. Gallagher, M. C. Chappell, C. M. Ferrario, and E. A. Tallant, “Distinct roles for ANG II and ANG-(1–7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes,” American Journal of Physiology, vol. 290, no. 2, pp. C420–C426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. M. F. Doobay, L. S. Talman, T. D. Obr, X. Tian, R. L. Davisson, and E. Lazartigues, “Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system,” American Journal of Physiology, vol. 292, no. 1, pp. R373–R381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. Z. Lin, Y. Chen, W. Zhang, A. F. Chen, S. Lin, and M. Morris, “RNA interference shows interactions between mouse brainstem angiotensin AT1 receptors and angiotensin-converting enzyme 2,” Experimental Physiology, vol. 93, no. 5, pp. 676–684, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. W. R. Welches, K. B. Brosnihan, and C. M. Ferrario, “A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11,” Life Sciences, vol. 52, no. 18, pp. 1461–1480, 1993. View at Google Scholar · View at Scopus
  91. M. C. Chappell, K. B. Brosnihan, D. I. Diz, and C. M. Ferrario, “Identification of angiotensin-(1–7) in rat brain. Evidence for differential processing of angiotensin peptides,” Journal of Biological Chemistry, vol. 264, no. 28, pp. 16518–16523, 1989. View at Google Scholar · View at Scopus
  92. J. L. Guy, D. W. Lambert, F. J. Warner, N. M. Hooper, and A. J. Turner, “Membrane-associated zinc peptidase families: comparing ACE and ACE2,” Biochimica et Biophysica Acta, vol. 1751, no. 1, pp. 2–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. M. C. Chappell, N. T. Pirro, A. Sykes, and C. M. Ferrario, “Metabolism of angiotensin-(1–7) by angiotensin-converting enzyme,” Hypertension, vol. 31, no. 1, pp. 362–367, 1998. View at Google Scholar · View at Scopus
  94. A. J. Allred, D. I. Diz, C. M. Ferrario, and M. C. Chappell, “Pathways for angiotensin-(1–7) metabolism in pulmonary and renal tissues,” American Journal of Physiology, vol. 279, no. 5, pp. F841–F850, 2000. View at Google Scholar · View at Scopus
  95. W. C. Probst, L. A. Snyder, D. I. Schuster, J. Brosius, and S. C. Sealfon, “Sequence alignment of the G-protein coupled receptor superfamily,” DNA and Cell Biology, vol. 11, no. 1, pp. 1–20, 1992. View at Google Scholar · View at Scopus
  96. B. Bunnemann, K. Fuxe, R. Metzger et al., “Autoradiographic localization of mas proto-oncogene mRNA in adult rat brain using in situ hybridization,” Neuroscience Letters, vol. 114, no. 2, pp. 147–153, 1990. View at Publisher · View at Google Scholar · View at Scopus
  97. K. A. Martin, S. G. N. Grant, and S. Hockfield, “The mas proto-oncogene is developmentally regulated in the rat central nervous system,” Developmental Brain Research, vol. 68, no. 1, pp. 75–82, 1992. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Metzger, M. Bader, T. Ludwig, C. Berberich, B. Bunnemann, and D. Ganten, “Expression of the mouse and rat mas proto-oncogene in the brain and peripheral tissues,” FEBS Letters, vol. 357, no. 1, pp. 27–32, 1995. View at Publisher · View at Google Scholar · View at Scopus
  99. D. Young, K. O'Neill, T. Jessell, and M. Wigler, “Characterization of the rat mas oncogene and its high-level expression in the hippocampus and cerebral cortex of rat brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 14, pp. 5339–5342, 1988. View at Google Scholar · View at Scopus
  100. L. K. Becker, G. M. Etelvino, T. Walther, R. A. S. Santos, and M. J. Campagnole-Santos, “Immunofluorescence localization of the receptor Mas in cardiovascular-related areas of the rat brain,” American Journal of Physiology, vol. 293, no. 3, pp. H1416–H1424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. K. A. Martin and S. Hockfield, “Expression of the mas proto-oncogene in the rat hippocampal formation is regulated by neuronal activity,” Molecular Brain Research, vol. 19, no. 4, pp. 303–309, 1993. View at Publisher · View at Google Scholar · View at Scopus
  102. P. Pagliaro and C. Penna, “Rethinking the renin-angiotensin system and its role in cardiovascular regulation,” Cardiovascular Drugs and Therapy, vol. 19, no. 1, pp. 77–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. Yagil and C. Yagil, “Congenics in the pathway from quantitative trait loci detection to gene identification: is that the way to go?” Journal of Hypertension, vol. 21, no. 11, pp. 2009–2011, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. M. A. Crackower, R. Sarao, G. Y. Oudit et al., “Angiotensin-converting enzyme 2 is an essential regulator of heart function,” Nature, vol. 417, no. 6891, pp. 822–828, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Igase, W. B. Strawn, P. E. Gallagher, R. L. Geary, and C. M. Ferrario, “Angiotensin II at1 receptors regulate ACE2 and angiotensin-(1–7) expression in the aorta of spontaneously hypertensive rats,” American Journal of Physiology, vol. 289, no. 3, pp. H1013–H1019, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. B. Tom, A. Dendorfer, and A. H. Jan Danser, “Bradykinin, angiotensin-(1–7), and ACE inhibitors: how do they interact?” International Journal of Biochemistry and Cell Biology, vol. 35, no. 6, pp. 792–801, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. C. M. Ferrario, M. C. Chappell, E. A. Tallant, K. B. Brosnihan, and D. I. Diz, “Counterregulatory actions of angiotensin-(1–7),” Hypertension, vol. 30, no. 3, pp. 535–541, 1997. View at Google Scholar · View at Scopus
  108. R. A. S. Santos, M. J. Campagnole-Santos, and S. P. Andrade, “Angiotensin-(1–7): an update,” Regulatory Peptides, vol. 91, no. 1–3, pp. 45–62, 2000. View at Publisher · View at Google Scholar · View at Scopus
  109. E. A. Tallant, D. I. Diz, and C. M. Ferrario, “Antiproliferative actions of angiotensin-(1–7) in vascular smooth muscle,” Hypertension, vol. 34, no. 4, pp. 950–957, 1999. View at Google Scholar · View at Scopus
  110. J. Buggy, S. Huot, M. Pamnani, and F. Haddy, “Periventricular forebrain mechanisms for blood pressure regulation,” Federation Proceedings, vol. 43, no. 1, pp. 25–31, 1984. View at Google Scholar · View at Scopus
  111. G. D. Fink, C. A. Bruner, and M. L. Mangiapane, “Area postrema is critical for angiotensin-induced hypertension in rats,” Hypertension, vol. 9, no. 4, pp. 355–361, 1987. View at Google Scholar · View at Scopus
  112. J. S. Gutkind, M. Kurihara, E. Castren, and J. M. Saavedra, “Increased concentration of angiotensin II binding sites in selected brain areas of spontaneously hypertensive rats,” Journal of Hypertension, vol. 6, no. 1, pp. 79–84, 1988. View at Google Scholar · View at Scopus
  113. R. Gyurko, D. Wielbo, and M. I. Phillips, “Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin,” Regulatory Peptides, vol. 49, no. 2, pp. 167–174, 1993. View at Publisher · View at Google Scholar · View at Scopus
  114. P. Ambühl, R. Gyurko, and M. I. Phillips, “A decrease in angiotensin receptor binding in rat brain nuclei by antisense oligonucleotides to the angiotensin AT1 receptor,” Regulatory Peptides, vol. 59, no. 2, pp. 171–182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  115. J. C. Falcon II, M. I. Phillips, W. E. Hoffman, and M. J. Brody, “Effects of intraventricular angiotensin II mediated by the sympathetic nervous system,” The American Journal of Physiology, vol. 235, no. 4, pp. H392–399, 1978. View at Google Scholar · View at Scopus
  116. A. Blume, T. Herdegen, and T. Unger, “Angiotensin peptides and inducible transcription factors,” Journal of Molecular Medicine, vol. 77, no. 3, pp. 339–357, 1999. View at Google Scholar · View at Scopus
  117. T. Unger, W. Rascher, and C. Schuster, “Central blood pressure effects of substance P and angiotensin II: role of the sympathetic nervous system and vasopressin,” European Journal of Pharmacology, vol. 71, no. 1, pp. 33–42, 1981. View at Google Scholar · View at Scopus
  118. W. McDonald, C. Wickre, and S. Aumann, “The sustained antihypertensive effect of chronic cerebroventricular infusion of angiotensin antagonist in spontaneously hypertensive rats,” Endocrinology, vol. 107, no. 5, pp. 1305–1308, 1980. View at Google Scholar · View at Scopus
  119. T. Okuno, S. Nagahama, M. D. Lindheimer, and S. Oparil, “Attenuation of the development of spontaneous hypertension in rats by chronic central administration of captopril,” Hypertension, vol. 5, no. 5 I, pp. 653–662, 1983. View at Google Scholar · View at Scopus
  120. K. Hermann, W. McDonald, and T. Unger, “Angiotensin biosynthesis and concentrations in brain of normotensive and hypertensive rats,” Journal de Physiologie, vol. 79, no. 6, pp. 471–480, 1984. View at Google Scholar · View at Scopus
  121. R. Casto and M. I. Phillips, “Angiotensin II attenuates baroreflexes at nucleus tractus solitarius of rats,” American Journal of Physiology, vol. 250, no. 2, pp. R193–R198, 1986. View at Google Scholar · View at Scopus
  122. K. Tamura, S. Umemura, N. Nyui et al., “Tissue-specific regulation of angiotensinogen gene expression in spontaneously hypertensive rats,” Hypertension, vol. 27, no. 6, pp. 1216–1223, 1996. View at Google Scholar · View at Scopus
  123. M. W. Chapleau and F. M. Abboud, “Neuro-Cardiovascular Regulation: from molecules to man: introduction,” Annals of the New York Academy of Sciences, vol. 940, pp. 13–22, 2001. View at Google Scholar · View at Scopus
  124. K. Tsutsumi and J. M. Saavedra, “Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain,” American Journal of Physiology, vol. 261, no. 1, pp. R209–R216, 1991. View at Google Scholar · View at Scopus
  125. H. Ando, J. Zhou, M. Macova, H. Imboden, and J. M. Saavedra, “Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats,” Stroke, vol. 35, no. 7, pp. 1726–1731, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. J. M. Barnes, N. M. Barnes, B. Costall et al., “Angiotensin II inhibits acetylcholine release from human temporal cortex: implications for cognition,” Brain Research, vol. 507, no. 2, pp. 341–343, 1990. View at Publisher · View at Google Scholar · View at Scopus
  127. O. Von Bohlen Und Halbach and D. Albrecht, “Angiotensin II inhibits long-term potentiation within the lateral nucleus of the amygdala through AT1 receptors,” Peptides, vol. 19, no. 6, pp. 1031–1036, 1998. View at Publisher · View at Google Scholar · View at Scopus
  128. A. G. Karczmar, “Brief presentation of the story and present status of studies of the vertebrate cholinergic system,” Neuropsychopharmacology, vol. 9, no. 3, pp. 181–199, 1993. View at Google Scholar · View at Scopus
  129. D. Albrecht, M. Broser, H. Krüger, and M. Bader, “Effects of angiotensin II and IV on geniculate activity in nontransgenic and transgenic rats,” European Journal of Pharmacology, vol. 332, no. 1, pp. 53–63, 1997. View at Publisher · View at Google Scholar · View at Scopus
  130. J. W. Wright and J. W. Harding, “The brain RAS and Alzheimer's disease,” Experimental Neurology, vol. 223, no. 2, pp. 326–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. J. J. Braszko, “AT2 but not AT1 receptor antagonism abolishes angiotensin II increase of the acquisition of conditioned avoidance responses in rats,” Behavioural Brain Research, vol. 131, no. 1-2, pp. 79–86, 2002. View at Publisher · View at Google Scholar · View at Scopus
  132. D. S. Kerr, L. R. M. Bevilaqua, J. S. Bonini et al., “Angiotensin II blocks memory consolidation through an AT2 receptor-dependent mechanism,” Psychopharmacology, vol. 179, no. 3, pp. 529–535, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. W. Bild, L. Hritcu, A. Ciobica, V. Artenie, and I. Haulica, “P02-170 Comparative effects of captopril, losartan and PD123319 on the memory processes in rats,” European Psychiatry, vol. 24, p. S860, 2009. View at Google Scholar
  134. J. S. Bonini, L. R. Bevilaqua, C. G. Zinn et al., “Angiotensin II disrupts inhibitory avoidance memory retrieval,” Hormones and Behavior, vol. 50, no. 2, pp. 308–313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. P. W. Landfield and S. A. Deadwyler, Long-Term Potentiation from Biophysics to Behavior, Liss, New York, NY, USA, 1988.
  136. G. Lynch, M. Kessler, A. Arai, and J. Larson, “The nature and causes of hippocampal long-term potentiation,” Progress in Brain Research, vol. 83, pp. 233–250, 1990. View at Google Scholar · View at Scopus
  137. R. D. Traub and R. Miles, Neuronal Networks of the Hippocampus, Cambridge University Press, 1991.
  138. J. Storm-Mathisen, J. Zimmer, and O. P. Ottersen, “Understanding the brain through the hippocampus: preface,” Progress in Brain Research, vol. 83, pp. 1–457, 1990. View at Google Scholar · View at Scopus
  139. J. W. Wright, E. A. Kramár, S. E. Meighan, and J. W. Harding, “Extracellular matrix molecules, long-term potentiation, memory consolidation and the brain angiotensin system,” Peptides, vol. 23, no. 1, pp. 221–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. G. Massicotte and M. Baudry, “Triggers and substrates of hippocampal synaptic plasticity,” Neuroscience and Biobehavioral Reviews, vol. 15, no. 3, pp. 415–423, 1991. View at Google Scholar · View at Scopus
  141. N. M. Barnes, B. Costall, M. E. Kelly, D. A. Murphy, and R. J. Naylor, “Cognitive enhancing actions of PD 123177 detected in a mouse habituation paradigm,” NeuroReport, vol. 2, no. 6, pp. 351–353, 1991. View at Google Scholar · View at Scopus
  142. N. M. Barnes, S. Champaneria, B. Costall, M. E. Kelly, D. A. Murphy, and R. J. Naylor, “Cognitive enhancing actions of DuP 753 detected in a mouse habituation paradigm,” NeuroReport, vol. 1, no. 3-4, pp. 239–242, 1990. View at Google Scholar · View at Scopus
  143. N. M. Barnes, B. Costall, M. E. Kelly, D. A. Murphy, and R. J. Naylor, “Anxiolytic-like action of DuP753, a non-peptide angiotensin II receptor antagonist,” NeuroReport, vol. 1, no. 1, pp. 20–21, 1990. View at Google Scholar · View at Scopus
  144. M. M. Akhavan, M. Emami-Abarghoie, B. Sadighi-Moghaddam, M. Safari, Y. Yousefi, and A. Rashidy-Pour, “Hippocampal angiotensin II receptors play an important role in mediating the effect of voluntary exercise on learning and memory in rat,” Brain Research, vol. 1232, pp. 132–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. O. Von Bohlen Und Halbach and D. Albrecht, “The CNS renin-angiotensin system,” Cell and Tissue Research, vol. 326, no. 2, pp. 599–616, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. J. Tchekalarova and D. Albrecht, “Angiotensin II suppresses long-term depression in the lateral amygdala of mice via L-type calcium channels,” Neuroscience Letters, vol. 415, no. 1, pp. 68–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. V. Raghavendra, K. Chopra, and S. K. Kulkarni, “Brain renin angiotensin system (RAS) in stress-induced analgesia and impaired retention,” Peptides, vol. 20, no. 3, pp. 335–342, 1999. View at Publisher · View at Google Scholar · View at Scopus
  148. L. Mateos, M.-A. Ismail, B. Winblad, and A. Cedazo-Mínguez, “Side-chain-oxidized oxysterols upregulate ACE2 and mas receptor in rat primary neurons,” Neurodegenerative Diseases, vol. 10, no. 1–4, pp. 313–316, 2012. View at Publisher · View at Google Scholar · View at Scopus
  149. J. Ellul, N. Archer, C. M. L. Foy et al., “The effects of commonly prescribed drugs in patients with Alzheimer's disease on the rate or deterioration,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 3, pp. 233–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  150. J. M. Barnes, N. M. Barnes, B. Costall et al., “Angiotensin-converting enzyme inhibition, angiotensin, and cognition,” Journal of Cardiovascular Pharmacology, vol. 19, no. 6, supplement, pp. S63–S71, 1992. View at Google Scholar · View at Scopus
  151. K. Shah, S. U. Qureshi, M. Johnson, N. Parikh, P. E. Schulz, and M. E. Kunik, “Does use of antihypertensive drugs affect the incidence or progression of dementia? A systematic review,” American Journal Geriatric Pharmacotherapy, vol. 7, no. 5, pp. 250–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. T. Walther, J.-P. Voigt, A. Fukamizu, H. Fink, and M. Bader, “Learning and anxiety in angiotensin-deficient mice,” Behavioural Brain Research, vol. 100, no. 1-2, pp. 1–4, 1999. View at Publisher · View at Google Scholar · View at Scopus
  153. T. C. Lee, D. Greene-Schloesser, and V. Payne, “Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment,” Radiation Research, vol. 178, pp. 46–56, 2012. View at Google Scholar
  154. Y.-F. Dong, K. Kataoka, Y. Tokutomi et al., “Perindopril, a centrally active angiotensin-converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer's disease,” FASEB Journal, vol. 25, no. 9, pp. 2911–2920, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. B. Maul, O. Von Bohlen Und Halbach, A. Becker et al., “Impaired spatial memory and altered dendritic spine morphology in angiotensin II type 2 receptor-deficient mice,” Journal of Molecular Medicine, vol. 86, no. 5, pp. 563–571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. K. Kazama, J. Anrather, P. Zhou et al., “Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals,” Circulation Research, vol. 95, no. 10, pp. 1019–1026, 2004. View at Publisher · View at Google Scholar · View at Scopus
  157. Y. Wei, A. T. Whaley-Connell, K. Chen et al., “NADPH oxidase contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic (mRen2) rat,” Hypertension, vol. 50, no. 2, pp. 384–391, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. N.-C. Li, A. Lee, R. A. Whitmer et al., “Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis,” British Medical Journal, vol. 340, no. 7738, p. 141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. S. Inaba, M. Iwai, M. Furuno et al., “Continuous activation of renin-angiotensin system impairs cognitive function in renin/angiotensinogen transgenic mice,” Hypertension, vol. 53, no. 2, pp. 356–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. S. Takeda, N. Sato, D. Takeuchi et al., “Angiotensin receptor blocker prevented β-amyloid-induced cognitive impairment associated with recovery of neurovascular coupling,” Hypertension, vol. 54, no. 6, pp. 1345–1352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. K. Kume, H. Hanyu, H. Sakurai, Y. Takada, T. Onuma, and T. Iwamoto, “Effects of telmisartan on cognition and regional cerebral blood flow in hypertensive patients with Alzheimer's disease,” Geriatrics and Gerontology International, vol. 12, no. 2, pp. 207–214, 2012. View at Publisher · View at Google Scholar · View at Scopus
  162. R. Mechaeil, P. Gard, A. Jackson, and J. Rusted, “Cognitive enhancement following acute losartan in normotensive young adults,” Psychopharmacology, vol. 217, no. 1, pp. 51–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  163. K. Reinecke, R. Lucius, A. Reinecke, U. Rickert, T. Herdegen, and T. Unger, “Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF-kappaB,” The FASEB Journal, vol. 17, no. 14, pp. 2094–2096, 2003. View at Google Scholar · View at Scopus
  164. L. Gendron, L. Laflamme, N. Rivard, C. Asselin, M. D. Payet, and N. Gallo-Payet, “Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21(ras) and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells,” Molecular Endocrinology, vol. 13, no. 9, pp. 1615–1626, 1999. View at Google Scholar · View at Scopus
  165. F. Côté, L. Laflamme, M. D. Payet, and N. Gallo-Payet, “Nitric oxide, a new second messenger involved in the action of angiotensin II on neuronal differentiation of NG108-15 cells,” Endocrine Research, vol. 24, no. 3-4, pp. 403–407, 1998. View at Google Scholar · View at Scopus
  166. M. Mogi and M. Horiuchi, “Effect of angiotensin II type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases,” Geriatrics & Gerontology International, vol. 13, no. 1, pp. 13–18, 2013. View at Google Scholar
  167. F. Jing, M. Mogi, A. Sakata et al., “Direct stimulation of angiotensin II type 2 receptor enhances spatial memory,” Journal of Cerebral Blood Flow and Metabolism, vol. 32, no. 2, pp. 248–255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  168. L. Hritcu, W. Bild, A. Ciobica, V. Artenie, and I. Haulica, “P02-169 Behavioral changes induced by angiotensin AT1 receptors blockade in the rat brain,” European Psychiatry, vol. 24, p. S859, 2009. View at Google Scholar
  169. A. Chalas and E. L. Conway, “No evidence for involvement of angiotensin II in spatial learning in water maze in rats,” Behavioural Brain Research, vol. 81, no. 1-2, pp. 199–205, 1996. View at Publisher · View at Google Scholar · View at Scopus
  170. P. R. Gard, “The role of angiotensin II in cognition and behaviour,” European Journal of Pharmacology, vol. 438, no. 1-2, pp. 1–14, 2002. View at Publisher · View at Google Scholar · View at Scopus
  171. V. J. DeNoble, K. F. DeNoble, K. R. Spencer, A. T. Chiu, P. C. Wong, and P. B. M. W. M. Timmermans, “Non-peptide angiotensin II receptor antagonist and angiotensin-converting enzyme inhibitor: effect on a renin-induced deficit of a passive avoidance response in rats,” Brain Research, vol. 561, no. 2, pp. 230–235, 1991. View at Publisher · View at Google Scholar · View at Scopus
  172. K. Hellner, T. Walther, M. Schubert, and D. Albrecht, “Angiotensin-(1–7) enhances LTP in the hippocampus through the G-protein-coupled receptor Mas,” Molecular and Cellular Neuroscience, vol. 29, no. 3, pp. 427–435, 2005. View at Publisher · View at Google Scholar · View at Scopus
  173. Y.-F. Dong, K. Kataoka, K. Toyama et al., “Attenuation of brain damage and cognitive impairment by direct renin inhibition in mice with chronic cerebral hypoperfusion,” Hypertension, vol. 58, no. 4, pp. 635–642, 2011. View at Publisher · View at Google Scholar · View at Scopus
  174. M. Mogi, K. Tsukuda, J.-M. Li et al., “Inhibition of cognitive decline in mice fed a high-salt and cholesterol diet by the angiotensin receptor blocker, olmesartan,” Neuropharmacology, vol. 53, no. 8, pp. 899–905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  175. K. Tsukuda, M. Mogi, J.-M. Li et al., “Amelioration of cognitive impairment in the type-2 diabetic mouse by the angiotensin II type-1 receptor blocker candesartan,” Hypertension, vol. 50, no. 6, pp. 1099–1105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  176. A. S. Awad, “Role of AT1 receptors in permeability of the blood-brain barrier in diabetic hypertensive rats,” Vascular Pharmacology, vol. 45, no. 3, pp. 141–147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  177. N. Hirawa, Y. Uehara, Y. Kawabata et al., “Long-term inhibition of renin-angiotensin system sustains memory function in aged Dahl rats,” Hypertension, vol. 34, no. 3, pp. 496–502, 1999. View at Google Scholar · View at Scopus
  178. N. Pelisch, N. Hosomi, M. Ueno et al., “Blockade of AT1 receptors protects the blood-brain barrier and improves cognition in dahl salt-sensitive hypertensive rats,” American Journal of Hypertension, vol. 24, no. 3, pp. 362–368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  179. M. A. Fleegal-Demotta, S. Doghu, and W. A. Banks, “Angiotensin II modulates BBB permeability via activation of the AT 1 receptor in brain endothelial cells,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 3, pp. 640–647, 2009. View at Publisher · View at Google Scholar · View at Scopus
  180. R.-W. Guo, L.-X. Yang, H. Wang, B. Liu, and L. Wang, “Angiotensin II induces matrix metalloproteinase-9 expression via a nuclear factor-kappaB-dependent pathway in vascular smooth muscle cells,” Regulatory Peptides, vol. 147, no. 1–3, pp. 37–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  181. W. Zhang, C. Smith, C. Howlett, and D. Stanimirovic, “Inflammatory activation of human brain endothelial cells by hypoxic astrocytes in vitro is mediated by IL-1β,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 6, pp. 967–978, 2000. View at Google Scholar · View at Scopus
  182. M. J. McKinley, A. L. Albiston, A. M. Allen et al., “The brain renin-angiotensin system: location and physiological roles,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 6, pp. 901–918, 2003. View at Publisher · View at Google Scholar · View at Scopus
  183. N. M. Davies, P. G. Kehoe, Y. Ben-Shlomo, and R. M. Martin, “Associations of anti-hypertensive treatments with Alzheimer's disease, vascular dementia, and other dementias,” Journal of Alzheimer's Disease, vol. 26, no. 4, pp. 699–708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  184. P. G. Kehoe and G. K. Wilcock, “Is inhibition of the renin-angiotensin system a new treatment option for Alzheimer's disease?” Lancet Neurology, vol. 6, no. 4, pp. 373–378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  185. A. M. Sharma, J. Janke, K. Gorzelniak, S. Engeli, and F. C. Luft, “Angiotensin blockade prevents type 2 diabetes by formation of fat cells,” Hypertension, vol. 40, no. 5, pp. 609–611, 2002. View at Publisher · View at Google Scholar · View at Scopus
  186. P. G. Kehoe, C. Russ, S. McIlroy et al., “Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease,” Nature Genetics, vol. 21, no. 1, pp. 71–72, 1999. View at Publisher · View at Google Scholar · View at Scopus
  187. E. Savaskan, C. Hock, G. Olivieri et al., “Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer's dementia,” Neurobiology of Aging, vol. 22, no. 4, pp. 541–546, 2001. View at Publisher · View at Google Scholar · View at Scopus
  188. J. S. Miners, Z. Van Helmond, P. G. Kehoe, and S. Love, “Changes with age in the activities of β-secretase and the aβ-degrading enzymes neprilysin, insulin-degrading enzyme and angiotensin-converting enzyme,” Brain Pathology, vol. 20, no. 4, pp. 794–802, 2010. View at Publisher · View at Google Scholar · View at Scopus
  189. J. S. Miners, E. Ashby, S. Baig et al., “Angiotensin-converting enzyme levels and activity in Alzheimer's disease: differences in brain and CSF ACE and association with ACE1 genotypes,” American Journal of Translational Research, vol. 1, no. 2, pp. 163–177, 2009. View at Google Scholar · View at Scopus
  190. P. Strazzullo, R. Iacone, L. Iacoviello et al., “Genetic variation in the renin-angiotensin system and abdominal adiposity in men: the olivetti prospective heart study,” Annals of Internal Medicine, vol. 138, no. 1, pp. 17–23, 2003. View at Google Scholar · View at Scopus
  191. L. A. Cassis, S. B. Police, F. Yiannikouris, and S. E. Thatcher, “Local adipose tissue renin-angiotensin system,” Current Hypertension Reports, vol. 10, no. 2, pp. 93–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  192. T. Ogihara, K. Kikuchi, H. Matsuoka et al., “The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2009),” Hypertension Research, vol. 32, no. 1, pp. 3–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  193. Y. Furiya, M. Ryo, M. Kawahara, T. Kiriyama, M. Morikawa, and S. Ueno, “Renin-angiotensin system blockers affect cognitive decline and serum adipocytokines in Alzheimer's disease,” Alzheimer's & Dementia, 2012. View at Google Scholar
  194. K. Wosik, R. Cayrol, A. Dodelet-Devillers et al., “Angiotensin II controls occludin function and is required for blood-brain barrier maintenance: relevance to multiple sclerosis,” Journal of Neuroscience, vol. 27, no. 34, pp. 9032–9042, 2007. View at Publisher · View at Google Scholar · View at Scopus
  195. H. K. Hamdi and R. Castellon, “A genetic variant of ACE increases cell survival: a new paradigm for biology and disease,” Biochemical and Biophysical Research Communications, vol. 318, no. 1, pp. 187–191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  196. T. Walther, D. Balschun, J.-P. Voigt et al., “Sustained long term potentiation and anxiety in mice lacking the Mas protooncogene,” Journal of Biological Chemistry, vol. 273, no. 19, pp. 11867–11873, 1998. View at Publisher · View at Google Scholar · View at Scopus
  197. T. Walther, J.-P. Voigt, H. Fink, and M. Bader, “Sex specific behavioural alterations in Mas-deficient mice,” Behavioural Brain Research, vol. 107, no. 1-2, pp. 105–109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  198. O. Von Bohlen und Halbach, T. Walther, M. Bader, and D. Albrecht, “Genetic deletion of angiotensin AT2 receptor leads to increased cell numbers in different brain structures of mice,” Regulatory Peptides, vol. 99, no. 2-3, pp. 209–216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  199. E. Kostenis, G. Milligan, A. Christopoulos et al., “G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor,” Circulation, vol. 111, no. 14, pp. 1806–1813, 2005. View at Publisher · View at Google Scholar · View at Scopus
  200. W. O. Sampaio, C. H. De Castro, R. A. S. Santos, E. L. Schiffrin, and R. M. Touyz, “Angiotensin-(1–7) counterregulates angiotensin II signaling in human endothelial cells,” Hypertension, vol. 50, no. 6, pp. 1093–1098, 2007. View at Publisher · View at Google Scholar · View at Scopus
  201. S. H. Croog, S. Levine, and M. A. Testa, “The effects of antihypertensive therapy on the quality of life,” New England Journal of Medicine, vol. 314, no. 26, pp. 1657–1664, 1986. View at Google Scholar · View at Scopus
  202. M. C. Zimmerman, E. Lazartigues, R. V. Sharma, and R. L. Davisson, “Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system,” Circulation Research, vol. 95, no. 2, pp. 210–216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  203. Y. Feng, X. Yue, H. Xia et al., “Angiotensin-converting enzyme 2 overexpression in the subfornical organ prevents the angiotensin II-mediated pressor and drinking responses and is associated with angiotensin II type 1 receptor downregulation,” Circulation Research, vol. 102, no. 6, pp. 729–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  204. Y. Feng, H. Xia, Y. Cai et al., “Brain-selective overexpression of human angiotensin-converting enzyme type 2 attenuates neurogenic hypertension,” Circulation Research, vol. 106, no. 2, pp. 373–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  205. J. J. Braszko, G. Kupryszewski, B. Witczuk, and K. Wisniewski, “Angiotensin II-(3–8)-hexapeptide affects motor activity, performance of passive avoidance and a conditioned avoidance response in rats,” Neuroscience, vol. 27, no. 3, pp. 777–783, 1988. View at Google Scholar · View at Scopus
  206. J. W. Wright, A. V. Miller-Wing, M. J. Shaffer et al., “Angiotensin II(3–8) (ANG IV) hippocampal binding: potential role in the facilitation of memory,” Brain Research Bulletin, vol. 32, no. 5, pp. 497–502, 1993. View at Publisher · View at Google Scholar · View at Scopus
  207. E. S. Pederson, J. W. Harding, and J. W. Wright, “Attenuation of scopolamine-induced spatial learning impairments by an angiotensin IV analog,” Regulatory Peptides, vol. 74, no. 2-3, pp. 97–103, 1998. View at Publisher · View at Google Scholar · View at Scopus
  208. J. W. Wright, L. Stubley, E. S. Pederson, E. A. Kramár, J. M. Hanesworth, and J. W. Harding, “Contributions of the brain angiotensin IV-AT4 receptor subtype system to spatial learning,” Journal of Neuroscience, vol. 19, no. 10, pp. 3952–3961, 1999. View at Google Scholar · View at Scopus
  209. L. Xiao, L. Gao, E. Lazartigues, and I. H. Zucker, “Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure,” Hypertension, vol. 58, no. 6, pp. 1057–1065, 2011. View at Publisher · View at Google Scholar · View at Scopus
  210. H. Zheng, X. Liu, and K. P. Patel, “Angiotensin-converting enzyme 2 over expression improves central nitric oxide-mediated sympathetic outflow in chronic heart failure,” American Journal of Physiology, vol. 301, no. 6, pp. 2402–2412, 2011. View at Publisher · View at Google Scholar · View at Scopus