Table of Contents
Algebra
Volume 2013, Article ID 543913, 11 pages
http://dx.doi.org/10.1155/2013/543913
Research Article

Construction and Composition of Rooted Trees via Descent Functions

1Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
2Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 8, 10123 Torino, Italy

Received 25 March 2013; Revised 28 June 2013; Accepted 30 June 2013

Academic Editor: Ricardo L. Soto Montero

Copyright © 2013 Marco Abrate et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Brocot, “Calcul des rouages par approximation, nouvelle methode,” Revue Chonometrique, vol. 3, pp. 186–194, 1861. View at Google Scholar
  2. N. Calkin and H. S. Wilf, “Recounting the rationals,” The American Mathematical Monthly, vol. 107, no. 4, pp. 360–363, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. A. Karttunen, An excerpt from the Book III of The Harmony of the World by Johannes Kepler.
  4. M. A. Stern, “Ueber eine zahlentheoretische Funktion,” Journal fur die Reine Und Angewandte Mathematik, vol. 55, pp. 193–220, 1858. View at Google Scholar
  5. F. J. M. Barning, “On Pythagorean and quasi-Pythagorean triangles and a generation process with the help of unimodular matrices,” Mathematisch Centrum Amsterdam Afdeling Zuivere Wiskunde, vol. ZW-001, 1963. View at Google Scholar
  6. A. Hall, “Genealogy of pythagorean triads,” The Mathematical Gazette, vol. 54, no. 390, pp. 377–379, 1970. View at Google Scholar
  7. H. Lee Price, “The pythagorean tree: a new species,” Cornell University Library, Mathematics, History and Overview, http://arxiv.org/abs/0809.4324v2.
  8. F. R. K. Chung, R. L. Graham, V. E. Hoggatt,, and M. Kleiman, “The number of Baxter permutations,” Journal of Combinatorial Theory A, vol. 24, no. 3, pp. 382–394, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. J. West, “Generating trees and forbidden subsequences,” Discrete Mathematics, vol. 157, no. 1–13, pp. 363–374, 1996. View at Google Scholar · View at Zentralblatt MATH
  10. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, Reading, Mass, USA, 2nd edition, 1994. View at MathSciNet
  11. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, OEIS Foundation, 2011, http://oeis.org/.
  12. B. Bates, M. Bunder, and K. Tognetti, “Locating terms in the Stern-Brocot tree,” European Journal of Combinatorics, vol. 31, no. 3, pp. 1020–1033, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet