Table of Contents
Advances in Molecular Biology
Volume 2014, Article ID 364976, 6 pages
http://dx.doi.org/10.1155/2014/364976
Review Article

Metabolic and Physiological Roles of Branched-Chain Amino Acids

1Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada R3E 0M2
2Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh

Received 6 July 2014; Accepted 8 August 2014; Published 19 August 2014

Academic Editor: Haile Yancy

Copyright © 2014 Md. Monirujjaman and Afroza Ferdouse. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Wu, “Amino acids: metabolism, functions, and nutrition,” Amino Acids, vol. 37, no. 1, pp. 1–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Skeie, V. Kvetan, K. M. Gil, M. M. Rothkopf, E. A. Newsholme, and J. Askanazi, “Branch-chain amino acids: their metabolism and clinical utility,” Critical Care Medicine, vol. 18, no. 5, pp. 549–571, 1990. View at Google Scholar · View at Scopus
  3. J. D. Fernstrom, “Branched-chain amino acids and brain function,” Journal of Nutrition, vol. 135, supplement 6, pp. 1539S–1546S, 2005. View at Google Scholar · View at Scopus
  4. H. Kainulainen, J. J. Hulmi, and U. M. Kujala, “Potential role of branched-chain amino acid catabolism in regulating fat oxidation,” Exercise and Sport Sciences Reviews, vol. 41, no. 48, pp. 194–200, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Mori, M. Hasebe, and K. Kobayashi, “Effect of total parenteral nutrition enriched in branched-chain amino acids on metabolite levels in septic rats,” Metabolism, vol. 37, no. 9, pp. 824–830, 1988. View at Publisher · View at Google Scholar · View at Scopus
  6. G. L. Blackburn, L. L. Moldawer, S. Usui, A. Bothe Jr., S. J. D. O'Keefe, and B. R. Bistrian, “Branched chain amino acid administration and metabolism during starvation, injury, and infection,” Surgery, vol. 86, no. 2, pp. 307–315, 1979. View at Google Scholar · View at Scopus
  7. H. Mochizuki, O. Trocki, L. Dominioni, and J. W. Alexander, “Effect of a diet rich in branched chain amino acids on severely burned guinea pigs,” Journal of Trauma, vol. 26, no. 12, pp. 1077–1085, 1986. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Tajiri and Y. Shimizu, “Branched-chain amino acids in liver diseases,” World Journal of Gastroenterology, vol. 19, no. 43, pp. 7620–7629, 2013. View at Publisher · View at Google Scholar
  9. K. Sugiyama, L. Yu, and N. Nagasue, “Direct effect of branched-chain amino acids on the growth and metabolism of cultured human hepatocellular carcinoma cells,” Nutrition and Cancer, vol. 31, no. 1, pp. 62–68, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kawaguchi, Y. Nagao, H. Matsuoka, T. Ide, and M. Sata, “Branched-chain amino acid-enriched supplementation improves insulin resistance in patients with chronic liver disease,” International Journal of Molecular Medicine, vol. 22, no. 1, pp. 105–112, 2008. View at Google Scholar · View at Scopus
  11. M. Arakawa, T. Masaki, J. Nishimura, M. Seike, and H. Yoshimatsu, “The effects of branched-chain amino acid granules on the accumulation of tissue triglycerides and uncoupling proteins in diet-induced obese mice,” Endocrine Journal, vol. 58, no. 3, pp. 161–170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Kuwahata, H. Kubota, H. Kanouchi et al., “Supplementation with branched-chain amino acids attenuates hepatic apoptosis in rats with chronic liver disease,” Nutrition Research, vol. 32, no. 7, pp. 522–529, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Ichikawa, T. Okabayashi, Y. Shima et al., “Branched-chain amino acid-enriched nutrients stimulate antioxidant DNA repair in a rat model of liver injury induced by carbon tetrachloride,” Molecular Biology Reports, vol. 39, no. 12, pp. 10803–10810, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. H. R. Freund and M. Hanani, “The metabolic role of branched-chain amino acids,” Nutrition, vol. 18, no. 3, pp. 287–288, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. L. Goldberg and R. Odessey, “Oxidation of amino acids by diaphragms from fed and fasted rats.,” The American Journal of Physiology, vol. 223, no. 6, pp. 1384–1391, 1972. View at Google Scholar · View at Scopus
  16. M. G. Buse and S. S. Reid, “Leucine: a possible regulator of protein turnover in muscle,” Journal of Clinical Investigation, vol. 56, no. 5, pp. 1250–1261, 1975. View at Publisher · View at Google Scholar · View at Scopus
  17. J. de Bandt and L. Cynober, “Therapeutic use of branched-chain amino acids in burn, trauma, and sepsis,” Journal of Nutrition, vol. 136, supplement, no. 1, pp. 308S–313S, 2006. View at Google Scholar · View at Scopus
  18. E. Blomstrand, “Potential role of branched-chain amino acid catabolism in regulating fat oxidation,” Journal of Nutrition, vol. 41, no. 4, pp. 194–200, 2006. View at Google Scholar · View at Scopus
  19. S. Khanna and S. Gopalan, “Role of branched-chain amino acids in liver disease: the evidence for and against,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 3, pp. 297–303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. T. M. O'Connell, “The complex role of branched chain amino acids in diabetes and cancer,” Metabolites, vol. 3, no. 4, pp. 931–945, 2013. View at Google Scholar
  21. R. Odessey and B. Parr, “Effect of insulin and leucine on protein turnover in rat soleus muscle after burn injury,” Metabolism, vol. 31, no. 1, pp. 82–87, 1982. View at Publisher · View at Google Scholar · View at Scopus
  22. J. C. Manelli, M. Garabedian, N. Ounis, M. Houvenaeghel, A. Ottomani, and J. Bimar, “Effects on muscular and general proteolysis in burn patients of a solution enriched with branched amino acids,” Annales Françaises d'Anesthésie et de Réanimation, vol. 3, no. 4, pp. 256–260, 1984. View at Google Scholar
  23. M. Holeček, “Glutamine and branched-chain amino acids—practical importance of their metabolic relations,” Casopis Lekaru Ceskych, vol. 144, no. 3, pp. S9–S12, 2005. View at Google Scholar · View at Scopus
  24. S. R. Kimball and L. S. Jefferson, “Regulation of protein synthesis by branched-chain amino acids,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 4, no. 1, pp. 39–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. B. Li and L. S. Jefferson, “Influence of amino acid availability on protein turnover in perfused skeletal muscle,” Biochimica et Biophysica Acta, vol. 544, no. 2, pp. 351–359, 1978. View at Publisher · View at Google Scholar · View at Scopus
  26. M. G. Buse, R. Atwell, and V. Mancusi, “In vitro effect of branched chain amino acids on the ribosomal cycle in muscles of fasted rats,” Hormone and Metabolic Research, vol. 11, no. 4, pp. 289–292, 1979. View at Google Scholar · View at Scopus
  27. E. J. Brown, M. W. Albers, K. Ichikawa, C. T. Keith, W. S. Lane, and S. L. Schreiber, “A mammalian protein targeted by G1-arresting rapamycin-receptor complex,” Nature, vol. 369, no. 6483, pp. 756–758, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Hay and N. Sonenberg, “Upstream and downstream of mTOR,” Genes and Development, vol. 18, no. 16, pp. 1926–1945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Ijichi, T. Matsumura, T. Tsuji, and Y. Eto, “Branched-chain amino acids promote albumin synthesis in rat primary hepatocytes through the mTOR signal transduction system,” Biochemical and Biophysical Research Communications, vol. 303, no. 1, pp. 59–64, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. C. Anthony, F. Yoshizawa, T. G. Anthony, T. C. Vary, L. S. Jefferson, and S. R. Kimball, “Leucine stimulates translation initiation skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway,” Journal of Nutrition, vol. 130, no. 10, pp. 2413–2419, 2000. View at Google Scholar · View at Scopus
  31. S. Nishitani, C. Ijichi, K. Takehana, S. Fujitani, and I. Sonaka, “Pharmacological activities of branched-chain amino acids: specificity of tissue and signal transduction,” Biochemical and Biophysical Research Communications, vol. 313, no. 2, pp. 387–389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Nishitani, T. Matsumura, S. Fujitani, I. Sonaka, Y. Miura, and K. Yagasaki, “Leucine promotes glucose uptake in skeletal muscles of rats,” Biochemical and Biophysical Research Communications, vol. 299, no. 5, pp. 693–696, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Peyrollier, E. Hajduch, A. S. Blair, R. Hyde, and H. S. Hundal, “L- leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin ( mTOR ) pathway in the L- leucine -induced up-regulation of system A amino acid transport,” The Biochemical Journal, vol. 350, part 2, pp. 361–368, 2000. View at Google Scholar
  34. J. Nishimura, T. Masaki, M. Arakawa, M. Seike, and H. Yoshimatsu, “Isoleucine prevents the accumulation of tissue triglycerides and upregulates the expression of PPARγ and uncoupling protein in diet-induced obese mice,” Journal of Nutrition, vol. 140, no. 3, pp. 496–500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. B. Gualano, T. Bozza, P. de Lopes Campos et al., “Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion,” Journal of Sports Medicine and Physical Fitness, vol. 51, no. 1, pp. 82–88, 2011. View at Google Scholar · View at Scopus
  36. L. Q. Qin, P. Xun, D. Bujnowski et al., “Higher branched-chain amino acid intake is associated with a lower prevalence of being overweight or obese in middle-aged East Asian and Western adults,” Journal of Nutrition, vol. 141, no. 2, pp. 249–254, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. D. Skaper, D. P. Molden, and J. E. Seegmiller, “Maple syrup urine disease: branched-chain amino acid concentrations and metabolism in cultured human lymphoblasts,” Biochemical Genetics, vol. 14, no. 7-8, pp. 527–539, 1976. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Schafer and P. Schauder, “Assessment of effects of amino acids and branched chain keto acids on leucine oxidation in human lymphocytes,” Scandinavian Journal of Clinical & Laboratory Investigation, vol. 48, no. 6, pp. 531–536, 1988. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Schauder and G. Schafer, “Oxidation of leucine in human lymphocytes,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 47, no. 5, pp. 447–453, 1987. View at Publisher · View at Google Scholar · View at Scopus
  40. P. C. Calder, “Branched-chain amino acids and immunity,” The Journal of Nutrition, vol. 136, supplement 1, no. 1, pp. 288S–293S, 2006. View at Google Scholar · View at Scopus
  41. T. M. Petro and J. K. Bhattacharjee, “Effect of dietary essential amino acid limitations upon the susceptibility to Salmonella typhimurium and the effect upon humoral and cellular immune responses in mice,” Infection and Immunity, vol. 32, no. 1, pp. 251–259, 1981. View at Google Scholar · View at Scopus
  42. F. B. Cerra, J. E. Mazuski, E. Chute et al., “Branched chain metabolic support. A prospective randomized, double-blind trial in surgical stress,” Annals of Surgery, vol. 199, no. 3, pp. 286–291, 1984. View at Publisher · View at Google Scholar · View at Scopus
  43. R. A. Bassit, L. A. Sawada, R. F. P. Bacurau et al., “Branched-chain amino acid supplementation and the immune response of long-distance athletes,” Nutrition, vol. 18, no. 5, pp. 376–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. M. M. Levy, M. P. Fink, J. C. Marshall et al., “2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference,” Critical Care Medicine, vol. 31, no. 4, pp. 1250–1256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. A. García-de-Lorenzo, C. Ortiz-Leyba, M. Planas et al., “Parenteral administration of different amounts of branch-chain amino acids in septic patients: clinical and metabolic aspects,” Critical Care Medicine, vol. 25, no. 3, pp. 418–424, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. B. C. Batch, K. Hyland, and L. P. Svetkey, “Branch chain amino acids: biomarkers of health and disease,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 17, no. 1, pp. 86–89, 2014. View at Google Scholar
  47. F. Xu, S. Tavintharan, C. F. Sum, K. Woon, S. C. Lim, and C. N. Ong, “Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics,” Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 6, pp. E1060–E1065, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. B. C. Melnik, “Leucine signaling in the pathogenesis of type 2 diabetes and obesity,” World Journal of Diabetes, vol. 3, no. 3, pp. 38–53, 2012. View at Google Scholar
  49. A. F. Sved, J. D. Fernstrom, and R. J. Wurtman, “Tyrosine administration reduces blood pressure and enhances brain norepinephrine release in spontaneously hypertensive rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 7, pp. 3511–3514, 1979. View at Google Scholar · View at Scopus