Table of Contents
Advances in Nephrology
Volume 2014, Article ID 691623, 11 pages
http://dx.doi.org/10.1155/2014/691623
Review Article

The Choice of the Iodinated Radiographic Contrast Media to Prevent Contrast-Induced Nephropathy

1Nephrology Unit, Department of “Health Sciences”, “Magna Graecia” University, Campus “Salvatore Venuta”, Viale Europa, loc. Germaneto, 88100 Catanzaro, Italy
2Nephrology Unit, Department of “Public Health”, “Federico II” University, Via Pansini No. 5, 80131 Naples, Italy

Received 11 June 2014; Revised 31 August 2014; Accepted 8 September 2014; Published 15 October 2014

Academic Editor: Jane Black

Copyright © 2014 Michele Andreucci et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. J. Barrett, P. S. Parfrey, H. M. Vavasour et al., “Contrast nephropathy in patients with impaired renal function: high versus low osmolar media,” Kidney International, vol. 41, no. 5, pp. 1274–1279, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Fuiano, D. Mancuso, C. Indolfi et al., “Early detection of progressive renal dysfunction in patients with coronary artery disease,” Kidney International, vol. 68, no. 6, pp. 2773–2780, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Andreucci, R. Solomon, and A. Tasanarong, “Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention,” BioMed Research International, vol. 2014, Article ID 741018, 20 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. Group KDIGOKAKIW, “KDIGO clinical practice guideline for acute kidney injury,” Kidney International, vol. 2, supplement, pp. 1–138, 2012. View at Google Scholar
  5. A. S. Levey, J. P. Bosch, J. B. Lewis, T. Greene, N. Rogers, and D. Roth, “A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation,” Annals of Internal Medicine, vol. 130, no. 6, pp. 461–470, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. D. W. Cockcroft and M. H. Gault, “Prediction of creatinine clearance from serum creatinine,” Nephron, vol. 16, no. 1, pp. 31–41, 1976. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Andreucci, T. Faga, M. Sabbatini, A. Pisani, D. Russo, and A. Michael, “How to prevent contrast-induced nephropathy in clinical practice,” Journal of Clinical Nephrology and Research, vol. 1, no. 1, p. 1002, 2014. View at Google Scholar
  8. M. Andreucci, R. Solomon, and A. Tasanarong, “Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention,” BioMed Research International, vol. 2014, Article ID 741018, 20 pages, 2014. View at Publisher · View at Google Scholar
  9. V. E. Andreucci, G. Fuiano, D. Russo, and M. Andreucci, “Vasomotor nephropathy in the elderly,” Nephrology Dialysis Transplantation, vol. 13, supplement 7, pp. 17–24, 1998. View at Google Scholar · View at Scopus
  10. V. E. Andreucci, G. Fuiano, P. Stanziale, and M. Andreucci, “Role of renal biopsy in the diagnosis and prognosis of acute renal failure,” Kidney International, Supplement, vol. 53, no. 66, pp. S91–S95, 1998. View at Google Scholar · View at Scopus
  11. M. Andreucci, T. Faga, A. Pisani, M. Sabbatini, and A. Michael, “Pathogenesis of acute renal failure induced by iodinated radiographic contrast media,” Austin Journal of Nephrology and Hypertension, vol. 1, no. 1, pp. 1–6, 2014. View at Google Scholar
  12. A. Caiazza, L. Russo, M. Sabbatini, and D. Russo, “Hemodynamic and tubular changes induced by contrast media,” BioMed Research International, vol. 2014, Article ID 578974, 7 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. S. W. Murphy, B. J. Barrett, and P. S. Parfrey, “Contrast nephropathy,” Journal of the American Society of Nephrology, vol. 11, no. 1, pp. 177–182, 2000. View at Google Scholar · View at Scopus
  14. S. Detrenis, M. Meschi, S. Musini, and G. Savazzi, “Lights and shadows on the pathogenesis of contrast-induced nephropathy: state of the art,” Nephrology Dialysis Transplantation, vol. 20, no. 8, pp. 1542–1550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Russo, R. Minutolo, B. Cianciaruso, B. Memoli, G. Conte, and L. de Nicola, “Early effects of contrast media on renal hemodynamics and tubular function in chronic renal failure,” Journal of the American Society of Nephrology, vol. 6, no. 5, pp. 1451–1458, 1995. View at Google Scholar · View at Scopus
  16. M. Andreucci, T. Faga, A. Pisani, M. Sabbatini, and A. Michael, “Acute kidney injury by radiographic contrast media: pathogenesis and prevention,” BioMed Research International, vol. 2014, Article ID 362725, 21 pages, 2014. View at Publisher · View at Google Scholar
  17. A. J. Giaccia, M. C. Simon, and R. Johnson, “The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease,” Genes and Development, vol. 18, no. 18, pp. 2183–2194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Sabbatini, M. Santillo, A. Pisani et al., “Inhibition of Ras/ERK1/2 signaling protects against postischemic renal injury,” American Journal of Physiology—Renal Physiology, vol. 290, no. 6, pp. F1408–F1415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. N. Heyman, S. Rosen, M. Khamaisi, J.-M. Idée, and C. Rosenberger, “Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy,” Investigative Radiology, vol. 45, no. 4, pp. 188–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Dawson, A. Becker, and J. M. Holton, “The effect of contrast media on the growth of bacteria,” The British Journal of Radiology, vol. 56, no. 671, pp. 809–815, 1983. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Sendeski, “Pathophysiology of renal tissue damage by iodinated contrast media,” Clinical and Experimental Pharmacology and Physiology, vol. 38, no. 5, pp. 292–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Pisani, E. Riccio, M. Andreucci et al., “Role of reactive oxygen species in pathogenesis of radiocontrast-induced nephropathy,” BioMed Research International, vol. 2013, Article ID 868321, 6 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Pisani, M. Sabbatini, E. Riccio et al., “Effect of a recombinant manganese superoxide dismutase on prevention of contrast-induced acute kidney injury,” Clinical and Experimental Nephrology, vol. 18, pp. 424431–8, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Quintavalle, M. Brenca, F. de Micco et al., “In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis,” Cell Death & Disease, vol. 2, no. 5, article e155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. H.-C. Lee, J.-G. Chang, H.-W. Yen, I.-H. Liu, W.-T. Lai, and S.-H. Sheu, “Ionic contrast media induced more apoptosis in diabetic kidney than nonionic contrast media,” Journal of Nephrology, vol. 24, no. 3, pp. 376–380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. R. W. Katzberg, “Urography into the 21st century: new contrast media, renal handling, imaging characteristics, and nephrotoxicity,” Radiology, vol. 204, no. 2, pp. 297–312, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Aspelin, P. Aubry, S.-G. Fransson, R. Strasser, R. Willenbrock, and K. J. Berg, “Nephrotoxic effects in high-risk patients undergoing angiography,” The New England Journal of Medicine, vol. 348, no. 6, pp. 491–499, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. C. P. Taliercio, R. E. Vlietstra, D. M. Ilstrup et al., “A randomized comparison of the nephrotoxicity of iopamidol and diatrizoate in high risk patients undergoing cardiac angiography,” Journal of the American College of Cardiology, vol. 17, no. 2, pp. 384–390, 1991. View at Publisher · View at Google Scholar · View at Scopus
  30. B. J. Barrett and E. J. Carlisle, “Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media,” Radiology, vol. 188, no. 1, pp. 171–178, 1993. View at Publisher · View at Google Scholar · View at Scopus
  31. B. J. Barrett, “Contrast nephrotoxicity,” Journal of the American Society of Nephrology, vol. 5, no. 2, pp. 125–137, 1994. View at Google Scholar · View at Scopus
  32. M. Dong, Z. Jiao, T. Liu, F. Guo, and G. Li, “Effect of administration route on the renal safety of contrast agents: a meta-analysis of randomized controlled trials,” Journal of Nephrology, vol. 25, no. 3, pp. 290–301, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. M. C. Heinrich, L. Häberle, V. Müller, W. Bautz, and M. Uder, “Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials,” Radiology, vol. 250, no. 1, pp. 68–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. K. J. Hardiek, R. E. Katholi, R. S. Robbs, and C. E. Katholi, “Renal effects of contrast media in diabetic patients undergoing diagnostic or interventional coronary angiography,” Journal of Diabetes and Its Complications, vol. 22, no. 3, pp. 171–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Mehran and E. Nikolsky, “Contrast-induced nephropathy: definition, epidemiology, and patients at risk,” Kidney International. Supplement, no. 100, pp. S11–S15, 2006. View at Google Scholar · View at Scopus
  36. M. R. Rudnick, S. Goldfarb, and J. Tumlin, “Contrast-induced nephropathy: is the picture any clearer?” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 261–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Neyra, S. Shah, R. Mooney, G. Jacobsen, J. Yee, and J. E. Novak, “Contrast-induced acute kidney injury following coronary angiography: a cohort study of hospitalized patients with or without chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 28, no. 6, pp. 1463–1471, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. A. C. Schoolwerth, D. A. Sica, B. J. Ballermann, and C. S. Wilcox, “Renal considerations in angiotensin converting enzyme inhibitor therapy: a statement for healthcare professionals from the council on the kidney in cardiovascular disease and the council for high blood pressure research of the american heart association,” Circulation, vol. 104, no. 16, pp. 1985–1991, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Cirit, O. Toprak, M. Yesil et al., “Angiotensin-converting enzyme inhibitors as a risk factor for contrast-induced nephropathy,” Nephron Clinical Practice, vol. 104, no. 1, pp. c20–c27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Kiski, W. Stepper, E. Brand, G. Breithardt, and H. Reinecke, “Impact of renin-angiotensin-aldosterone blockade by angiotensin-converting enzyme inhibitors or AT-1 blockers on frequency of contrast medium-induced nephropathy: a post-hoc analysis from the Dialysis-versus-Diuresis (DVD) trial,” Nephrology Dialysis Transplantation, vol. 25, no. 3, pp. 759–764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Y. Rim, H. Ro, W. C. Kang et al., “The effect of renin-angiotensin-aldosterone system blockade on contrast-induced acute kidney injury: a propensity-matched study,” American Journal of Kidney Diseases, vol. 60, no. 4, pp. 576–582, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Umruddin, K. Moe, and K. Superdock, “ACE inhibitor or angiotensin II receptor blocker use is a risk factor for contrast-induced nephropathy,” Journal of Nephrology, vol. 25, no. 5, pp. 776–781, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. M. A. C. Onuigbo and N. T. C. Onuigbo, “Does renin-angiotensin aldosterone system blockade exacerbate contrast-induced nephropathy in patients with chronic kidney disease? A prospective 50-month mayo clinic study,” Renal Failure, vol. 30, no. 1, pp. 67–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O’Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” American Journal of Medicine, vol. 103, no. 5, pp. 368–375, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. C. P. Taliercio, R. E. Vlietstra, L. D. Fisher, and J. C. Burnett, “Risks for renal dysfunction with cardiac angiography,” Annals of Internal Medicine, vol. 104, no. 4, pp. 501–504, 1986. View at Publisher · View at Google Scholar · View at Scopus
  46. P. McCullough, “Outcomes of contrast-induced nephropathy: Experience in patients undergoing cardiovascular intervention,” Catheterization and Cardiovascular Interventions, vol. 67, no. 3, pp. 335–343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. T. Cochran, W. S. Wong, and D. J. Roe, “Predicting angiography-induced acute renal function impairment: clinical risk model,” American Journal of Roentgenology, vol. 141, no. 5, pp. 1027–1033, 1983. View at Publisher · View at Google Scholar · View at Scopus
  48. T. G. Gleeson and S. Bulugahapitiya, “Contrast-induced nephropathy,” American Journal of Roentgenology, vol. 183, no. 6, pp. 1673–1689, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. D. B. Oliveira, “Prophylaxis against contrast-induced nephropathy,” The Lancet, vol. 353, no. 9165, pp. 1638–1639, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. M. J. Kuhn, N. Chen, D. V. Sahani et al., “The PREDICT study: a randomized double-blind comparison of contrast-induced nephropathy after low- or isoosmolar contrast agent exposure,” The American Journal of Roentgenology, vol. 191, no. 1, pp. 151–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Byrd and R. L. Sherman, “Radiocontrast-induced acute renal failure: a clinical and pathophysiologic review,” Medicine, vol. 58, no. 3, pp. 270–279, 1979. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Harkonen and C. Kjellstrand, “Contrast nephropathy,” American Journal of Nephrology, vol. 1, no. 2, pp. 69–77, 1981. View at Publisher · View at Google Scholar · View at Scopus
  53. G. A. Khoury, J. C. Hopper, Z. Varghese et al., “Nephrotoxicity of ionic and non-ionic contrast material in digital vascular imaging and selective renal arteriography,” The British Journal of Radiology, vol. 56, no. 669, pp. 631–635, 1983. View at Publisher · View at Google Scholar · View at Scopus
  54. R. D. Moore, E. P. Steinberg, N. R. Powe et al., “Nephrotoxicity of high-osmolality versus low-osmolality contrast media: randomized clinical trial,” Radiology, vol. 182, no. 3, pp. 649–655, 1992. View at Publisher · View at Google Scholar · View at Scopus
  55. R. W. Katzberg and B. J. Barrett, “Risk of iodinated contrast material-induced nephropathy with intravenous administration,” Radiology, vol. 243, no. 3, pp. 622–628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. D. R. Campbell, B. K. Flemming, W. F. Mason, S. A. Jackson, D. J. Hirsch, and K. J. MacDonald, “A comparative study of the nephrotoxicity of iohexol, iopamidol and ioxaglate in peripheral angiography,” Canadian Association of Radiologists Journal, vol. 41, no. 3, pp. 133–137, 1990. View at Google Scholar · View at Scopus
  57. A. S. Gomes, J. D. Baker, V. Martin-Paredero et al., “Acute renal dysfunction after major arteriography,” American Journal of Roentgenology, vol. 145, no. 6, pp. 1249–1253, 1985. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Seeliger, B. Flemming, T. Wronski et al., “Viscosity of contrast media perturbs renal hemodynamics,” Journal of the American Society of Nephrology, vol. 18, no. 11, pp. 2912–2920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Seeliger, K. Becker, M. Ladwig, T. Wronski, P. B. Persson, and B. Flemming, “Up to 50-fold increase in urine viscosity with iso-osmolar contrast media in the rat,” Radiology, vol. 256, no. 2, pp. 406–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Seeliger, D. C. Lenhard, and P. B. Persson, “Contrast media viscosity versus osmolality in kidney injury: lessons from animal studies,” BioMed Research International, vol. 2014, Article ID 358136, 15 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Jost, H. Pietsch, J. Sommer et al., “Retention of iodine and expression of biomarkers for renal damage in the kidney after application of iodinated contrast media in rats,” Investigative Radiology, vol. 44, no. 2, pp. 114–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Dyvik, K. Dyrstad, and A. Tronstad, “Relationship between viscosity and determined injection pressure in angiography catheters for common roentgen contrast media,” Acta Radiologica. Supplementum, vol. 399, pp. 43–49, 1995. View at Google Scholar · View at Scopus
  63. J. Ueda, A. Nygren, P. Hansell, and U. Erikson, “Influence of contrast media on single nephron glomerular filtration rate in rat kidney: a comparison between diatrizoate, iohexol, ioxaglate, and iotrolan,” Acta Radiologica, vol. 33, no. 6, pp. 596–599, 1992. View at Google Scholar · View at Scopus
  64. J. Ueda, A. Nygren, P. Hansell, and H. R. Ulfendahl, “Effect of intravenous contrast media on proximal and distal tubular hydrostatic pressure in the rat kidney,” Acta Radiologica, vol. 34, no. 1, pp. 83–87, 1993. View at Publisher · View at Google Scholar · View at Scopus
  65. M. C. Heinrich, M. K. Kuhlmann, A. Grgic, M. Heckmann, B. Kramann, and M. Uder, “Cytotoxic effects of ionic high-osmolar, nonionic monomeric, and nonionic iso-osmolar dimeric iodinated contrast media on renal tubular cells in vitro,” Radiology, vol. 235, no. 3, pp. 843–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Michael, T. Faga, A. Pisani et al., “Molecular mechanisms of renal cellular nephrotoxicity due to radiocontrast media,” BioMed Research International, vol. 2014, Article ID 249810, 10 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Andreucci, “Contrast media and nephrotoxicity: a molecular conundrum,” Giornale Italiano di Nefrologia, vol. 28, no. 4, p. 355, 2011. View at Google Scholar
  68. M. Andreucci, G. Fuiano, P. Presta et al., “Radiocontrast media cause dephosphorylation of Akt and downstream signaling targets in human renal proximal tubular cells,” Biochemical Pharmacology, vol. 72, no. 10, pp. 1334–1342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Andreucci, G. Lucisano, T. Faga et al., “Differential activation of signaling pathways involved in cell death, survival and inflammation by radiocontrast media in human renal proximal tubular cells,” Toxicological Sciences, vol. 119, no. 2, pp. 408–416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Andreucci, T. Faga, D. Russo et al., “Differential activation of signaling pathways by low-osmolar and iso-osmolar radiocontrast agents in human renal tubular cells,” Journal of Cellular Biochemistry, vol. 115, no. 2, pp. 281–289, 2014. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Andreucci, A. Michael, C. Kramers et al., “Renal ischemia/reperfusion and ATP depletion/repletion in LLC-PK1 cells result in phosphorylation of FKHR and FKHRL1,” Kidney International, vol. 64, no. 4, pp. 1189–1198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Andreucci, G. Fuiano, P. Presta et al., “Downregulation of cell survival signalling pathways and increased cell damage in hydrogen peroxide-treated human renal proximal tubular cells by alpha-erythropoietin,” Cell Proliferation, vol. 42, no. 4, pp. 554–561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Andreucci, T. Faga, G. Lucisano et al., “Mycophenolic acid inhibits the phosphorylation of NF-κB and JNKs and causes a decrease in IL-8 release in H2O2-treated human renal proximal tubular cells,” Chemico-Biological Interactions, vol. 185, no. 3, pp. 253–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. V. E. Andreucci, D. Russo, B. Cianciaruso, and M. Andreucci, “Some sodium, potassium and water changes in the elderly and their treatment,” Nephrology Dialysis Transplantation, vol. 11, supplement 9, pp. 9–17, 1996. View at Google Scholar · View at Scopus
  75. M. Andreucci, S. Federico, and V. E. Andreucci, “Edema and acute renal failure,” Seminars in Nephrology, vol. 21, no. 3, pp. 251–256, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. P. A. McCullough, M. E. Bertrand, J. A. Brinker, and F. Stacul, “A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media,” Journal of the American College of Cardiology, vol. 48, no. 4, pp. 692–699, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. R. J. Solomon, M. K. Natarajan, S. Doucet et al., “Cardiac angiography in renally impaired patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease,” Circulation, vol. 115, no. 25, pp. 3189–3196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Reed, P. Meier, U. U. Tamhane, K. B. Welch, M. Moscucci, and H. S. Gurm, “The relative renal safety of iodixanol compared with low-osmolar contrast media: a meta-analysis of randomized controlled trials,” JACC: Cardiovascular Interventions, vol. 2, no. 7, pp. 645–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Bolognese, G. Falsini, C. Schwenke et al., “Impact of iso-osmolar versus low-osmolar contrast agents on contrast-induced nephropathy and tissue reperfusion in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (from the Contrast Media and Nephrotoxicity Following primary Angioplasty for Acute Myocardial Infarction [CONTRAST-AMI] trial),” The American Journal of Cardiology, vol. 109, no. 1, pp. 67–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. B. J. Barrett, R. W. Katzberg, H. S. Thomsen et al., “Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double-blind comparison of iodixanol and iopamidol,” Investigative Radiology, vol. 41, no. 11, pp. 815–821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Andreucci, T. Faga, G. B. De Sarro, and A. Michael, “The toxicity of radiographic contrast agents in the clinical practice,” Journal of Nephrology Advances. In press.
  82. M. Andreucci, T. Faga, F. Perticone, and A. Michael, “Radiographic contrast agents, drugs useful for diagnostics, but with contrast-induced nephropathy as side effect,” Journal of Nephrology and Urology. In press.
  83. R. G. Cigarroa, R. A. Lange, R. H. Williams, and D. Hillis, “Dosing of contrast material to prevent contrast nephropathy in patients with renal disease,” The American Journal of Medicine, vol. 86, no. 6, pp. 649–652, 1989. View at Publisher · View at Google Scholar · View at Scopus
  84. W. K. Laskey, C. Jenkins, F. Selzer et al., “Volume-to-creatinine clearance ratio: a pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention,” Journal of the American College of Cardiology, vol. 50, no. 7, pp. 584–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. H. S. Gurm, S. R. Dixon, D. E. Smith et al., “Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions,” Journal of the American College of Cardiology, vol. 58, no. 9, pp. 907–914, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. J. J. Keaney, C. M. Hannon, and P. T. Murray, “Contrast-induced acute kidney injury: how much contrast is safe?” Nephrology Dialysis Transplantation, vol. 28, no. 6, pp. 1376–1383, 2013. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Andreucci, T. Faga, A. Pisani, M. Sabbatini, D. Russo, and A. Michael, “Prevention of contrast-induced nephropathy through a knowledge of its pathogenesis and risk factors,” The Scientific World Journal. In press.
  88. H. S. Thomsen, “Guidelines for contrast media from the European society of urogenital radiology,” American Journal of Roentgenology, vol. 181, no. 6, pp. 1463–1471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. H. S. Trivedi, H. Moore, S. Nasr et al., “A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity,” Nephron Clinical Practice, vol. 93, no. 1, pp. C29–C34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Mueller, “Prevention of contrast-induced nephropathy with volume supplementation,” Kidney International Supplement, no. 100, pp. S16–S19, 2006. View at Google Scholar · View at Scopus
  91. G. J. Merten, W. P. Burgess, L. V. Gray et al., “Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial,” The Journal of the American Medical Association, vol. 291, no. 19, pp. 2328–2334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Masuda, T. Yamada, T. Mine et al., “Comparison of usefulness of sodium bicarbonate versus sodium chloride to prevent contrast-induced nephropathy in patients undergoing an emergent coronary procedure,” The American Journal of Cardiology, vol. 100, no. 5, pp. 781–786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. E. E. Ozcan, S. Guneri, B. Akdeniz et al., “Sodium bicarbonate, N-acetylcysteine, and saline for prevention of radiocontrast-induced nephropathy. A comparison of 3 regimens for protecting contrast-induced nephropathy in patients undergoing coronary procedures. A single-center prospective controlled trial,” American Heart Journal, vol. 154, no. 3, pp. 539–544, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Tamura, Y. Goto, K. Miyamoto et al., “Efficacy of single-bolus administration of sodium bicarbonate to prevent contrast-induced nephropathy in patients with mild renal insufficiency undergoing an elective coronary procedure,” The American Journal of Cardiology, vol. 104, no. 7, pp. 921–925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. S. D. Navaneethan, S. Singh, S. Appasamy, R. E. Wing, and A. R. Sehgal, “Sodium bicarbonate therapy for prevention of contrast-induced nephropathy: a systematic review and meta-analysis,” American Journal of Kidney Diseases, vol. 53, no. 4, pp. 617–627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. E. A. J. Hoste, J. J. de Waele, S. A. Gevaert, S. Uchino, and J. A. Kellum, “Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis,” Nephrology Dialysis Transplantation, vol. 25, no. 3, pp. 747–758, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Joannidis, M. Schmid, and C. J. Wiedermann, “Prevention of contrast media-induced nephropathy by isotonic sodium bicarbonate: a meta-analysis,” Wiener Klinische Wochenschrift, vol. 120, no. 23-24, pp. 742–748, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. F. Assadi, “Acetazolamide for prevention of contrast-induced nephropathy: a new use for an old drug,” Pediatric Cardiology, vol. 27, no. 2, pp. 238–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Pakfetrat, M. H. Nikoo, L. Malekmakan et al., “A comparison of sodium bicarbonate infusion versus normal saline infusion and its combination with oral acetazolamide for prevention of contrast-induced nephropathy: a randomized, double-blind trial,” International Urology and Nephrology, vol. 41, no. 3, pp. 629–634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. J.-S. Jang, H.-Y. Jin, J.-S. Seo et al., “Sodium bicarbonate therapy for the prevention of contrast-induced acute kidney injury—a systematic review and meta-analysis,” Circulation Journal, vol. 76, no. 9, pp. 2255–2265, 2012. View at Publisher · View at Google Scholar · View at Scopus
  101. C. Briguori, F. Airoldi, D. D'Andrea et al., “Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies,” Circulation, vol. 115, no. 10, pp. 1211–1217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. D. Reddan, M. Laville, and V. D. Garovic, “Contrast-induced nephropathy and its prevention: what do we really know from evidence-based findings?” Journal of Nephrology, vol. 22, no. 3, pp. 333–351, 2009. View at Google Scholar · View at Scopus
  103. C. S. R. Baker, A. Wragg, S. Kumar, R. De Palma, L. R. I. Baker, and C. J. Knight, “A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study,” Journal of the American College of Cardiology, vol. 41, no. 12, pp. 2114–2118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Andreucci, “Statins inCIN: a problemat least partly solved?” Giornale Italiano di Nefrologia, vol. 30, no. 3, 2013. View at Google Scholar
  105. M. Sabbatini, A. Pisani, F. Uccello et al., “Atorvastatin improves the course of ischemic acute renal failure in aging rats,” Journal of the American Society of Nephrology, vol. 15, no. 4, pp. 901–909, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Khanal, N. Attallah, D. E. Smith et al., “Statin therapy reduces contrast-induced nephropathy: an analysis of contemporary percutaneous interventions,” The American Journal of Medicine, vol. 118, no. 8, pp. 843–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. G. Patti, A. Nusca, M. Chello et al., “Usefulness of statin pretreatment to prevent contrast-induced nephropathy and to improve long-term outcome in patients undergoing percutaneous coronary intervention,” The American Journal of Cardiology, vol. 101, no. 3, pp. 279–285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. B.-C. Zhang, W.-M. Li, and Y.-W. Xu, “High-dose statin pretreatment for the prevention of contrast-induced nephropathy: a meta-analysis,” Canadian Journal of Cardiology, vol. 27, no. 6, pp. 851–858, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Leoncini, A. Toso, M. Maioli, F. Tropeano, and F. Bellandi, “Statin treatment before percutaneous cononary intervention,” Journal of Thoracic Disease, vol. 5, no. 3, pp. 335–342, 2013. View at Publisher · View at Google Scholar · View at Scopus
  110. G. Patti, E. Ricottini, A. Nusca et al., “Short-term, high-dose atorvastatin pretreatment to prevent contrast-induced nephropathy in patients with acute coronary syndromes undergoing percutaneous coronary intervention (from the ARMYDA-CIN [atorvastatin for reduction of myocardial damage during angioplasty-contrast-induced nephropathy] trial,” The American Journal of Cardiology, vol. 108, no. 1, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Quintavalle, D. Fiore, F. de Micco et al., “Impact of a high loading dose of atorvastatin on contrast-induced acute kidney injury,” Circulation, vol. 126, no. 25, pp. 3008–3016, 2012. View at Publisher · View at Google Scholar · View at Scopus
  112. R. Solomon, C. Werner, D. Mann, J. D'Elia, and P. Silva, “Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents,” The New England Journal of Medicine, vol. 331, no. 21, pp. 1416–1420, 1994. View at Publisher · View at Google Scholar · View at Scopus
  113. J.-M. Weinstein, S. Heyman, and M. Brezis, “Potential deleterious effect of furosemide in radiocontrast nephropathy,” Nephron, vol. 62, no. 4, pp. 413–415, 1992. View at Publisher · View at Google Scholar · View at Scopus
  114. L. S. Weisberg, P. B. Kurnik, and B. R. Kurnik, “Risk of radiocontrast nephropathy in patients with and without diabetes mellitus,” Kidney International, vol. 45, no. 1, pp. 259–265, 1994. View at Publisher · View at Google Scholar
  115. C. Briguori, G. Visconti, B. Ricciardelli, and G. Condorelli, “Renal insufficiency following contrast media administration trial II (REMEDIAL II): renalGuard system in high-risk patients for contrast-induced acute kidney injury: rationale and design,” EuroIntervention, vol. 6, no. 9, pp. 1117–1122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. B. Vogt, P. Ferrari, C. Schönholzer et al., “Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful,” The American Journal of Medicine, vol. 111, no. 9, pp. 692–698, 2001. View at Publisher · View at Google Scholar · View at Scopus
  117. M. Andreucci, “Radiographic contrast nephropathy,” Giornale Italiano di Nefrologia, vol. 31, no. 5, 2014. View at Google Scholar
  118. J. J. Pasternak and E. E. Williamson, “Clinical pharmacology, uses, and adverse reactions of iodinated contrast agents: a primer for the non-radiologist,” Mayo Clinic Proceedings, vol. 87, no. 4, pp. 390–402, 2012. View at Publisher · View at Google Scholar · View at Scopus