Table of Contents
Advances in Neuroscience
Volume 2014, Article ID 104920, 15 pages
http://dx.doi.org/10.1155/2014/104920
Review Article

Neurocognitive Basis of Schizophrenia: Information Processing Abnormalities and Clues for Treatment

1Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
2Department of Psychology, University of Groningen, 9712 CP Groningen, The Netherlands

Received 10 September 2013; Accepted 8 December 2013; Published 9 February 2014

Academic Editor: Daniela Schulz

Copyright © 2014 André Aleman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. T. Mueser and S. R. McGurk, “Schizophrenia,” The Lancet, vol. 363, no. 9426, pp. 2063–2072, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Jablensky, “Schizophrenia: the epidemiological horizon,” in Schizophrenia, S. R. Hirsch and D. R. Weinberger, Eds., Blackwell, Oxford, UK, 1995. View at Google Scholar
  3. H. I. Kaplan, B. J. Sadock, and J. A. Grebb, Synopsis of Psychiatry, William and Wilkins, Baltimore, Md, USA, 1994.
  4. A. Aleman, R. S. Kahn, and J.-P. Selten, “Sex differences in the risk of schizophrenia: evidence from meta-analysis,” Archives of General Psychiatry, vol. 60, no. 6, pp. 565–571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. The American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, The American Psychiatric Association, Arlington, Va, USA, 5th edition, 2013.
  6. W. T. Carpenter Jr., J. S. Strauss, and S. Muleh, “Are there pathognomonic symptoms in schizophrenia? An empiric investigation of Schneider's first rank symptoms,” Archives of General Psychiatry, vol. 28, no. 6, pp. 847–852, 1973. View at Google Scholar · View at Scopus
  7. N. C. Andreasen, M. Flaum, V. W. Swayze II, G. Tyrrell, and S. Arndt, “Positive and negative symptoms in schizophrenia: a critical reappraisal,” Archives of General Psychiatry, vol. 47, no. 7, pp. 615–621, 1990. View at Google Scholar · View at Scopus
  8. H. Häfner and W. An der Heiden, “Course and outcome of schizophrenia,” in Schizophrenia, S. R. Hirsch and D. R. Weinberger, Eds., Blackwell, London, UK, 2nd edition, 2003. View at Google Scholar
  9. R. W. Heinrichs and K. K. Zakzanis, “Neurocognitive deficit in schizophrenia: a quantitative review of the evidence,” Neuropsychology, vol. 12, no. 3, pp. 426–445, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Reichenberg and P. D. Harvey, “Neuropsychological impairments in schizophrenia: integration of performance-based and brain imaging findings,” Psychological Bulletin, vol. 133, no. 5, pp. 833–858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Aleman, R. Hijman, E. H. F. De Haan, and R. S. Kahn, “Memory impairment in schizophrenia: a meta-analysis,” The American Journal of Psychiatry, vol. 156, no. 9, pp. 1358–1366, 1999. View at Google Scholar · View at Scopus
  12. J. Schaefer, E. Giangrande, D. R. Weinberger, and D. Dickinson, “The global cognitive impairment in schizophrenia: consistent over decades and around the world,” Schizophrenia Research, vol. 150, no. 1, pp. 42–50, 2013. View at Google Scholar
  13. M. M. Sitskoorn, A. Aleman, S. J. H. Ebisch, M. C. M. Appels, and R. S. Kahn, “Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis,” Schizophrenia Research, vol. 71, no. 2-3, pp. 285–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. B. E. Snitz, A. W. MacDonald III, and C. S. Carter, “Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes,” Schizophrenia Bulletin, vol. 32, no. 1, pp. 179–194, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Dickinson, M. E. Ramsey, and J. M. Gold, “Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia,” Archives of General Psychiatry, vol. 64, no. 5, pp. 532–542, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. E. E. M. Knowles, A. S. David, and A. Reichenberg, “Processing speed deficits in schizophrenia: reexamining the evidence,” The American Journal of Psychiatry, vol. 167, no. 7, pp. 828–835, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. R. Marder and W. Fenton, “Measurement and treatment research to improve cognition in schizophrenia: NIMH MATRICS initiative to support the development of agents for improving cognition in schizophrenia,” Schizophrenia Research, vol. 72, no. 1, pp. 5–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. B. W. Palmer, R. K. Heaton, J. Kuck et al., “Is it possible to be schizophrenic yet neuropsychologically normal?” Neuropsychology, vol. 11, no. 3, pp. 437–446, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. C. M. Wilk, J. M. Gold, R. P. McMahon, K. Humber, V. N. Iannone, and R. W. Buchanan, “No, it is not possible to be schizophrenic yet neuropsychologically normal,” Neuropsychology, vol. 19, no. 6, pp. 778–786, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. R. Weinberger, K. F. Berman, and R. F. Zec, “Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence,” Archives of General Psychiatry, vol. 43, no. 2, pp. 114–124, 1986. View at Google Scholar · View at Scopus
  21. M. J. Minzenberg, A. R. Laird, S. Thelen, C. S. Carter, and D. C. Glahn, “Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia,” Archives of General Psychiatry, vol. 66, no. 8, pp. 811–822, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. H. Callicott, A. Bertolino, V. S. Mattay et al., “Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited,” Cerebral Cortex, vol. 10, no. 11, pp. 1078–1092, 2000. View at Google Scholar · View at Scopus
  23. D. S. Manoach, D. Z. Press, V. Thangaraj et al., “Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI,” Biological Psychiatry, vol. 45, no. 9, pp. 1128–1137, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Achim and M. Lepage, “Episodic memory-related activation in schizophrenia: meta-analysis,” British Journal of Psychiatry, vol. 187, pp. 500–509, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. D. M. Barch and A. Ceaser, “Cognition in schizophrenia: core psychological and neural mechanisms,” Trends in Cognitive Sciences, vol. 16, no. 1, pp. 27–34, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. R. S. Kahn and R. S. Keefe, “Schizophrenia is a cognitive illness: time for a change in focus,” JAMA Psychiatry, 2013. View at Publisher · View at Google Scholar
  27. A. Meyer-Lindenberg, “From maps to mechanisms through neuroimaging of schizophrenia,” Nature, vol. 468, no. 7321, pp. 194–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Aleman, E. H. F. de Haan, S. A. Castner, G. V. Williams, and P. S. Goldman-Rakic, “Antipsychotics and working memory in Schizophrenia,” Science, vol. 289, no. 5476, pp. 56–58, 2000. View at Google Scholar · View at Scopus
  29. A. L. Mishara and T. E. Goldberg, “A meta-analysis and critical review of the effects of conventional neuroleptic treatment on cognition in schizophrenia: opening a closed book,” Biological Psychiatry, vol. 55, no. 10, pp. 1013–1022, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. R. S. E. Keefe, J. A. Sweeney, H. Gu et al., “Effects of olanzapine, quetiapine, and risperidone on neurocognitive function in early psychosis: a randomized, double-blind 52-week comparison,” The American Journal of Psychiatry, vol. 164, no. 7, pp. 1061–1071, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. E. J. Liemburg, H. Knegtering, H. C. Klein, R. Kortekaas, and A. Aleman, “Antipsychotic medication and prefrontal cortex activation: a review of neuroimaging findings,” European Neuropsychopharmacology, vol. 22, no. 6, pp. 387–400, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Krabbendam and A. Aleman, “Cognitive rehabilitation in schizophrenia: a quantitative analysis of controlled studies,” Psychopharmacology, vol. 169, no. 3-4, pp. 376–382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Wykes, V. Huddy, C. Cellard, S. R. McGurk, and P. Czobor, “A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes,” The American Journal of Psychiatry, vol. 168, no. 5, pp. 472–485, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. S. M. Eack, G. E. Hogarty, R. Y. Cho et al., “Neuroprotective effects of cognitive enhancement therapy against gray matter loss in early schizophrenia: results from a 2-year randomized controlled trial,” Archives of General Psychiatry, vol. 67, no. 7, pp. 674–682, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Aleman and F. Laroi, Hallucinations: The Science of Idiosyncratic Perception, The American Psychological Association, Washington, DC, USA, 2008.
  36. S. McCarthy-Jones, T. Trauer, A. Mackinnon, E. Sims, N. Thomas, and D. L. Copolov, “A new phenomenological survey of auditory hallucinations: evidence for subtypes and implications for theory and practice,” Schizophrenia Bulletin, 2013. View at Publisher · View at Google Scholar
  37. D. A. Silbersweig, E. Stern, C. Frith et al., “A functional neuroanatomy of hallucinations in schizophrenia,” Nature, vol. 378, no. 6553, pp. 176–179, 1995. View at Google Scholar · View at Scopus
  38. S. S. Shergill, M. J. Brammer, S. C. R. Williams, R. M. Murray, and P. K. McGuire, “Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging,” Archives of General Psychiatry, vol. 57, no. 11, pp. 1033–1038, 2000. View at Google Scholar · View at Scopus
  39. B. R. Lennox, S. B. G. Park, I. Medley, P. G. Morris, and P. B. Jones, “The functional anatomy of auditory hallucinations in schizophrenia,” Psychiatry Research, vol. 100, no. 1, pp. 13–20, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. I. E. C. Sommer, K. M. J. Diederen, J.-D. Blom et al., “Auditory verbal hallucinations predominantly activate the right inferior frontal area,” Brain, vol. 131, no. 12, pp. 3169–3177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Jardri, A. Pouchet, D. Pins, and P. Thomas, “Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis,” The American Journal of Psychiatry, vol. 168, no. 1, pp. 73–81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Kühn and J. Gallinat, “Quantitative meta-analysis on state and trait aspects of auditory verbal hallucinations in schizophrenia,” Schizophrenia Bulletin, vol. 38, no. 4, pp. 779–786, 2012. View at Google Scholar
  43. R. E. Hoffman, R. Gueorguieva, K. A. Hawkins et al., “Temporoparietal transcranial magnetic stimulation for auditory hallucinations: safety, efficacy and moderators in a fifty patient sample,” Biological Psychiatry, vol. 58, no. 2, pp. 97–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Aleman, I. E. Sommer, and R. S. Kahn, “Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: a meta-analysis,” Journal of Clinical Psychiatry, vol. 68, no. 3, pp. 416–421, 2007. View at Google Scholar · View at Scopus
  45. A. Aleman, “Use of repetitive transcranial magnetic stimulation for treatment in psychiatry,” Clinical Psychopharmacology and Neuroscience, vol. 11, no. 2, pp. 53–59, 2013. View at Google Scholar
  46. A. Vercammen, H. Knegtering, R. Bruggeman et al., “Effects of bilateral repetitive transcranial magnetic stimulation on treatment resistant auditory-verbal hallucinations in schizophrenia: a randomized controlled trial,” Schizophrenia Research, vol. 114, no. 1–3, pp. 172–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. C. W. Slotema, A. Aleman, Z. J. Daskalakis, and I. E. Sommer, “Meta-analysis of repetitive transcranial magnetic stimulation in the treatment of auditory verbal hallucinations: update and effects after one month,” Schizophrenia Research, vol. 142, no. 1–3, pp. 40–45, 2012. View at Google Scholar
  48. F. Waters, P. Allen, A. Aleman et al., “Auditory hallucinations in schizophrenia and nonschizophrenia populations: a review and integrated model of cognitive mechanisms,” Schizophrenia Bulletin, vol. 38, no. 4, pp. 683–693, 2012. View at Google Scholar
  49. J. C. Badcock, F. A. V. Waters, M. T. Maybery, and P. T. Michie, “Auditory hallucinations: failure to inhibit irrelevant memories,” Cognitive Neuropsychiatry, vol. 10, no. 2, pp. 125–136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. F. A. V. Waters, J. C. Badcock, P. T. Michie, and M. T. Maybery, “Auditory hallucinations in schizophrenia: intrusive thoughts and forgotten memories,” Cognitive Neuropsychiatry, vol. 11, no. 1, pp. 65–83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. M. F. Soriano, J. F. Jiménez, P. Román, and M. T. Bajo, “Intentional inhibition in memory and hallucinations: directed forgetting and updating,” Neuropsychology, vol. 23, no. 1, pp. 61–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. R.-P. Behrendt, “Underconstrained perception: a theoretical approach to the nature and function of verbal hallucinations,” Comprehensive Psychiatry, vol. 39, no. 4, pp. 236–248, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Grossberg, “How hallucinations may arise from brain mechanisms of learning, attention, and volition,” Journal of the International Neuropsychological Society, vol. 6, no. 5, pp. 583–592, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Vercammen and A. Aleman, “Semantic expectations can induce false perceptions in hallucination-prone individuals,” Schizophrenia Bulletin, vol. 36, no. 1, pp. 151–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Daalman, S. Verkooijen, E. M. Derks, A. Aleman, and I. E. Sommer, “The influence of semantic top-down processing in auditory verbal hallucinations,” Schizophrenia Research, vol. 139, no. 1–3, pp. 82–86, 2012. View at Google Scholar
  56. A. S. David, “Why we need more debate on whether psychotic symptoms lie on a continuum with normality,” Psychological Medicine, vol. 40, no. 12, pp. 1935–1942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Aleman, E. Formisano, H. Koppenhagen, P. Hagoort, E. H. F. de Haan, and R. S. Kahn, “The functional neuroanatomy of metrical stress evaluation of perceived and imagined spoken words,” Cerebral Cortex, vol. 15, no. 2, pp. 221–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Vercammen, H. Knegtering, J. A. denBoer, E. J. Liemburg, and A. Aleman, “Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area,” Biological Psychiatry, vol. 67, no. 10, pp. 912–918, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Curcic-Blake, E. Liemburg, A. Vercammen et al., “When broca goes uninformed: reduced information flow to Broca's area in Schizophrenia patients with auditory hallucinations,” Schizophrenia Bulletin, vol. 39, no. 5, pp. 1087–1095, 2013. View at Publisher · View at Google Scholar
  60. M. K. Johnson, S. Hashtroudi, and D. Stephen Lindsay, “Source monitoring,” Psychological Bulletin, vol. 114, no. 1, pp. 3–28, 1993. View at Google Scholar · View at Scopus
  61. M. K. Johnson and C. L. Raye, “Reality monitoring,” Psychological Review, vol. 88, no. 1, pp. 67–85, 1981. View at Publisher · View at Google Scholar · View at Scopus
  62. R. S. E. Keefe, “The neurobiology of disturbances of the self: autonoetic agnosia in schizophrenia,” in Insight and Psychosis, X. F. Amador and A. David, Eds., Oxford University Press, New York, NY, USA, 1998. View at Google Scholar
  63. C. D. Frith and D. J. Done, “Towards a neuropsychology of schizophrenia,” British Journal of Psychiatry, vol. 153, pp. 437–443, 1988. View at Google Scholar · View at Scopus
  64. R. P. Bentall, G. A. Baker, and S. Havers, “Reality monitoring and psychotic hallucinations,” British Journal of Clinical Psychology, vol. 30, no. 3, pp. 213–222, 1991. View at Google Scholar · View at Scopus
  65. R. S. E. Keefe, M. C. Arnold, U. J. Bayen, J. P. McEvoy, and W. H. Wilson, “Source-monitoring deficits for self-generated stimuli in schizophrenia: multinomial modeling of data from three sources,” Schizophrenia Research, vol. 57, no. 1, pp. 51–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Waters, T. Woodward, P. Allen, A. Aleman, and I. Sommer, “Self-recognition deficits in schizophrenia patients with auditory hallucinations: a meta-analysis of the literature,” Schizophrenia Bulletin, vol. 38, no. 4, pp. 741–750, 2012. View at Google Scholar
  67. J. S. Simons, S. W. Davis, S. J. Gilbert, C. D. Frith, and P. W. Burgess, “Discriminating imagined from perceived information engages brain areas implicated in schizophrenia,” NeuroImage, vol. 32, no. 2, pp. 696–703, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Allen, E. Amaro, C. H. Y. Fu et al., “Neural correlates of the misattribution of speech in schizophrenia,” British Journal of Psychiatry, vol. 190, pp. 162–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Elvevåg and T. E. Goldberg, “Cognitive impairment in schizophrenia is the core of the disorder,” Critical Reviews in Neurobiology, vol. 14, no. 1, pp. 1–21, 2000. View at Google Scholar
  70. R. W. Heinrichs, “The primacy of cognition in schizophrenia,” The American Psychologist, vol. 60, no. 3, pp. 229–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Aleman and A. S. David, “How to fill a half-full glass: emotion and schizophrenia,” The American Psychologist, vol. 61, no. 1, pp. 75–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Aleman and R. S. Kahn, “Strange feelings: do amygdala abnormalities dysregulate the emotional brain in schizophrenia?” Progress in Neurobiology, vol. 77, no. 5, pp. 283–298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. C. G. Kohler, J. B. Walker, E. A. Martin, K. M. Healey, and P. J. Moberg, “Facial emotion perception in schizophrenia: a meta-analytic review,” Schizophrenia Bulletin, vol. 36, no. 5, pp. 1009–1019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Hoekert, R. S. Kahn, M. Pijnenborg, and A. Aleman, “Impaired recognition and expression of emotional prosody in schizophrenia: review and meta-analysis,” Schizophrenia Research, vol. 96, no. 1–3, pp. 135–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Irani, S. Seligman, V. Kamath, C. Kohler, and R. C. Gur, “A meta-analysis of emotion perception and functional outcomes in schizophrenia,” Schizophrenia Research, vol. 137, no. 1–3, pp. 203–211, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. H. Li, R. C. K. Chan, G. M. McAlonan, and Q.-Y. Gong, “Facial emotion processing in schizophrenia: a meta-analysis of functional neuroimaging data,” Schizophrenia Bulletin, vol. 36, no. 5, pp. 1029–1039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Anticevic, J. X. Van Snellenberg, R. E. Cohen, G. Repovs, E. C. Dowd, and D. M. Barch, “Amygdala recruitment in schizophrenia in response to aversive emotional material: a meta-analysis of neuroimaging studies,” Schizophrenia Bulletin, vol. 38, no. 3, pp. 608–621, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Baas, A. Aleman, M. Vink, N. F. Ramsey, E. H. F. de Haan, and R. S. Kahn, “Evidence of altered cortical and amygdala activation during social decision-making in schizophrenia,” NeuroImage, vol. 40, no. 2, pp. 719–727, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. K. N. Ochsner, S. A. Bunge, J. J. Gross, and J. D. E. Gabrieli, “Rethinking feelings: an fMRI study of the cognitive regulation of emotion,” Journal of Cognitive Neuroscience, vol. 14, no. 8, pp. 1215–1229, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. K. McRae, B. Ciesielski, and J. J. Gross, “Unpacking cognitive reappraisal: goals, tactics, and outcomes,” Emotion, vol. 12, no. 2, pp. 250–255, 2012. View at Google Scholar
  81. J. J. Gross, “Antecedent- and response-focused emotion regulation: divergent consequences for experience, expression, and physiology,” Journal of Personality and Social Psychology, vol. 74, no. 1, pp. 224–237, 1998. View at Google Scholar · View at Scopus
  82. A. Bechara, H. Damasio, A. R. Damasio, and G. P. Lee, “Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making,” Journal of Neuroscience, vol. 19, no. 13, pp. 5473–5481, 1999. View at Google Scholar · View at Scopus
  83. J. T. Buhle, J. A. Silvers, T. D. Wager et al., “Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies,” Cereb Cortex, 2013. View at Publisher · View at Google Scholar
  84. D. Kimhy, J. Vakhrusheva, L. Jobson-Ahmed, N. Tarrier, D. Malaspina, and J. J. Gross, “Emotion awareness and regulation in individuals with schizophrenia: implications for social functioning,” Psychiatry Research, vol. 200, no. 2-3, pp. 193–201, 2012. View at Google Scholar
  85. L. van der Meer, M. V. Wout, and A. Aleman, “Emotion regulation strategies in patients with schizophrenia,” Psychiatry Research, vol. 170, no. 2-3, pp. 108–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. R. W. Morris, A. Sparks, P. B. Mitchell, C. S. Weickert, and M. J. Green, “Lack of cortico-limbic coupling in bipolar disorder and schizophrenia during emotion regulation,” Translational Psychiatry, vol. 2, article e90, 2012. View at Publisher · View at Google Scholar · View at Scopus
  87. R. M. Seyfarth and D. L. Cheney, “Affiliation, empathy, and the origins of theory of mind,” Proceedings of the National Academy of Sciences of the USA, vol. 110, supplement 2, pp. 10349–10356, 2013. View at Google Scholar
  88. L. Harrington, R. Langdon, R. J. Siegert, and J. McClure, “Schizophrenia, theory of mind, and persecutory delusions,” Cognitive Neuropsychiatry, vol. 10, no. 2, pp. 87–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. R. Corcoran, G. Mercer, and C. D. Frith, “Schizophrenia, symptomatology and social inference: investigating “theory of mind” in people with schizophrenia,” Schizophrenia Research, vol. 17, no. 1, pp. 5–13, 1995. View at Publisher · View at Google Scholar · View at Scopus
  90. R. Saxe and N. Kanwisher, “People thinking about thinking people: the role of the temporo-parietal junction in ‘theory of mind’,” NeuroImage, vol. 19, no. 4, pp. 1835–1842, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. D. Samson, I. A. Apperly, C. Chiavarino, and G. W. Humphreys, “Left temporoparietal junction is necessary for representing someone else's belief,” Nature Neuroscience, vol. 7, no. 5, pp. 499–500, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. P. Ruby and J. Decety, “What you believe versus what you think they believe: a neuroimaging study of conceptual perspective-taking,” European Journal of Neuroscience, vol. 17, no. 11, pp. 2475–2480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. A. D. Rowe, P. R. Bullock, C. E. Polkey, and R. G. Morris, “‘Theory of mind’ impairments and their relationship to executive functioning following frontal lobe excisions,” Brain, vol. 124, pp. 600–616, 2001. View at Google Scholar · View at Scopus
  94. D. Samson, I. A. Apperly, U. Kathirgamanathan, and G. W. Humphreys, “Seeing it my way: a case of a selective deficit in inhibiting self-perspective,” Brain, vol. 128, no. 5, pp. 1102–1111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. H. L. Gallagher and C. D. Frith, “Functional imaging of ‘theory of mind’,” Trends in Cognitive Sciences, vol. 7, no. 2, pp. 77–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Vogeley, P. Bussfeld, A. Newen et al., “Mind reading: neural mechanisms of theory of mind and self-perspective,” NeuroImage, vol. 14, no. 1, pp. 170–181, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. A. R. Aron, T. W. Robbins, and R. A. Poldrack, “Inhibition and the right inferior frontal cortex,” Trends in Cognitive Sciences, vol. 8, no. 4, pp. 170–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. S. G. Shamay-Tsoory, J. Aharon-Peretz, and Y. Levkovitz, “The neuroanatomical basis of affective mentalizing in schizophrenia: comparison of patients with schizophrenia and patients with localized prefrontal lesions,” Schizophrenia Research, vol. 90, no. 1–3, pp. 274–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. S. G. Shamay-Tsoory and J. Aharon-Peretz, “Dissociable prefrontal networks for cognitive and affective theory of mind: a lesion study,” Neuropsychologia, vol. 45, no. 13, pp. 3054–3067, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. G. Modinos, R. Renken, S. G. Shamay-Tsoory, J. Ormel, and A. Aleman, “Neurobiological correlates of theory of mind in psychosis proneness,” Neuropsychologia, vol. 48, no. 13, pp. 3715–3724, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. L. van der Meer, N. A. Groenewold, W. A. Nolen, M. Pijnenborg, and A. Aleman, “Inhibit yourself and understand the other: neural basis of distinct processes underlying Theory of Mind,” NeuroImage, vol. 56, no. 4, pp. 2364–2374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. L. van der Meer, N. A. Groenewold, M. Pijnenborg, and A. Aleman, “Psychosis-proneness and neural correlates of self-inhibition in theory of mind,” PLoS ONE, vol. 8, no. 7, Article ID e67774, 2013. View at Google Scholar
  103. B. Derntl, A. Finkelmeyer, T. K. Toygar et al., “Generalized deficit in all core components of empathy in schizophrenia,” Schizophrenia Research, vol. 108, no. 1–3, pp. 197–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. D. Baas, M. Van't Wout, A. Aleman, and R. S. Kahn, “Social judgement in clinically stable patients with schizophrenia and healthy relatives: behavioural evidence of social brain dysfunction,” Psychological Medicine, vol. 38, no. 5, pp. 747–754, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. T. Jellema, J. Lorteije, S. van Rijn et al., “Involuntary interpretation of social cues is compromised in autism spectrum disorders,” Autism Research, vol. 2, no. 4, pp. 192–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. M. van 't Wout, S. van Rijn, T. Jellema, R. S. Kahn, and A. Aleman, “Deficits in implicit attention to social signals in schizophrenia and high risk groups: behavioural evidence from a new illusion,” PLoS ONE, vol. 4, no. 5, Article ID e5581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. X. F. Amador and A. S. David, Eds., Insight and Psychosis: awareness of Illness in Schizophrenia and Related Disorders, Oxford University Press, Oxford, UK, 2nd edition, 2004.
  108. A. S. David, “Insight and psychosis,” British Journal of Psychiatry, vol. 156, pp. 798–808, 1990. View at Google Scholar · View at Scopus
  109. A. S. David, “The clinical importance of insight: an overview,” in Insight and Psychosis: Awareness of Illness in Schizophrenia and Related Disorders, X. F. Amador and A. S. David, Eds., Oxford University Press, Oxford, UK, 2nd edition, 2004. View at Google Scholar
  110. A. Aleman, N. Agrawal, K. D. Morgan, and A. S. David, “Insight in psychosis and neuropsychological function: meta-analysis,” British Journal of Psychiatry, vol. 189, pp. 204–212, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Nair, E. C. Palmer, A. Aleman, and A. S. David, “Relationship between cognitive functioning and clinical and cognitive insight in psychotic disorders: a review and meta-analysis,” Schizophrenia Research, vol. 152, no. 1, pp. 191–200, 2014. View at Google Scholar
  112. P. J. Quee, L. van der Meer, R. Bruggeman et al., “Insight in psychosis: relationship with neurocognition, social cognition and clinical symptoms depends on phase of illness,” Schizophrenia Bulletin, vol. 37, no. 1, pp. 29–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Epstein, “Integration of the cognitive and the psychodynamic unconscious,” The American Psychologist, vol. 49, no. 8, pp. 709–724, 1994. View at Google Scholar · View at Scopus
  114. T. D. Wilson, S. Lindsey, and T. Y. Schooler, “A model of dual attitudes,” Psychological Review, vol. 107, no. 1, pp. 101–126, 2000. View at Google Scholar · View at Scopus
  115. S. L. Koole, A. Dijksterhuis, and A. van Knippenberg, “What's in a name: implicit self-esteem and the automatic self,” Journal of Personality and Social Psychology, vol. 80, no. 4, pp. 669–685, 2001. View at Publisher · View at Google Scholar · View at Scopus
  116. S. C. Johnson, L. C. Baxter, L. S. Wilder, J. G. Pipe, J. E. Heiserman, and G. P. Prigatano, “Neural correlates of self-reflection,” Brain, vol. 125, no. 8, pp. 1808–1814, 2002. View at Google Scholar · View at Scopus
  117. D. T. Stuss, G. G. Gallup Jr., and M. P. Alexander, “The frontal lobes are necessary for ‘theory of mind’,” Brain, vol. 124, no. 2, pp. 279–286, 2001. View at Google Scholar · View at Scopus
  118. L. van der Meer, S. Costafreda, A. Aleman, and A. S. David, “Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia,” Neuroscience and Biobehavioral Reviews, vol. 34, no. 6, pp. 935–946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. R. Kemp and A. S. David, “Insight and compliance,” in Treatment Compliance and the Therapeutic Alliance, pp. 61–84, Harwood Academic Publishers, Amsterdam, The the Netherlands, 1997. View at Google Scholar
  120. L. van der Meer, A. E. de Vos, A. P. Stiekema et al., “Insight in schizophrenia: involvement of self-reflection networks?” Schizophrenia Bulletin2013, vol. 39, no. 6, pp. 1288–1295.
  121. A. T. Beck, E. Baruch, J. M. Balter, R. A. Steer, and D. M. Warman, “A new instrument for measuring insight: the beck cognitive insight scale,” Schizophrenia Research, vol. 68, no. 2-3, pp. 319–329, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. R. J. Davidson, “Affective style, psychopathology, and resilience: brain mechanisms and plasticity,” The American Psychologist, vol. 55, no. 11, pp. 1196–1214, 2000. View at Google Scholar · View at Scopus
  123. G. H. Pijnenborg, J. M. Spikman, B. F. Jeronimus, and A. Aleman, “Insight in schizophrenia: associations with empathy,” European Archives of Psychiatry and Clinical Neurosciences, vol. 263, no. 4, pp. 299–307, 2013. View at Google Scholar
  124. H. G. Engen and T. Singer, “Empathy circuits,” Current Opinion in Neurobiology, vol. 23, no. 2, pp. 275–282, 2013. View at Google Scholar
  125. G. Foussias and G. Remington, “Negative symptoms in schizophrenia: avolition and occam's razor,” Schizophrenia Bulletin, vol. 36, no. 2, pp. 359–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Kiang, B. K. Christensen, G. Remington, and S. Kapur, “Apathy in schizophrenia: clinical correlates and association with functional outcome,” Schizophrenia Research, vol. 63, no. 1-2, pp. 79–88, 2003. View at Publisher · View at Google Scholar · View at Scopus
  127. R. Bottlender, A. Strauss, and H.-J. Möller, “Social disability in schizophrenic, schizoaffective and affective disorders 15 years after first admission,” Schizophrenia Research, vol. 116, no. 1, pp. 9–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. R. van Reekum, D. T. Stuss, and L. Ostrander, “Apathy: why care?” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 17, no. 1, pp. 7–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. D. T. Stuss, R. van Reekum, and K. J. Murphy, “Differentiation of states and causes of apathy,” in The Neuropsychology of Emotion, J. Borod, Ed., Oxford University Press, New York, NY, USA, 2000. View at Google Scholar
  130. R. Levy and B. Dubois, “Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits,” Cerebral Cortex, vol. 16, no. 7, pp. 916–928, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. E. Liemburg, S. Castelein, R. Stewart et al., “Two subdomains of negative symptoms in psychotic disorders: established and confirmed in two large cohorts,” Journal of Psychiatric Research, vol. 47, no. 6, pp. 718–725, 2013. View at Google Scholar
  132. R. M. Roth, L. A. Flashman, A. J. Saykin, T. W. McAllister, and R. Vidaver, “Apathy in schizophrenia: reduced frontal lobe volume and neuropsychological deficits,” The American Journal of Psychiatry, vol. 161, no. 1, pp. 157–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. J. H. Callicott, A. Bertolino, M. F. Egan, V. S. Mattay, F. J. P. Langheim, and D. R. Weinberger, “Selective relationship between prefrontal N-acetylaspartate measures and negative symptoms in schizophrenia,” The American Journal of Psychiatry, vol. 157, no. 10, pp. 1646–1651, 2000. View at Publisher · View at Google Scholar · View at Scopus
  134. E. C. Dowd and D. M. Barch, “Anhedonia and emotional experience in schizophrenia: neural and behavioral indicators,” Biological Psychiatry, vol. 67, no. 10, pp. 902–911, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. J. J. Simon, A. Biller, S. Walther et al., “Neural correlates of reward processing in schizophrenia: relationship to apathy and depression,” Schizophrenia Research, vol. 118, no. 1–3, pp. 154–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. G. E. Tsai and P.-Y. Lin, “Strategies to enhance N-Methyl-D-Aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis,” Current Pharmaceutical Design, vol. 16, no. 5, pp. 522–537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. M. J. Noetzel, C. K. Jones, and P. J. Conn, “Emerging approaches for treatment of schizophrenia: modulation of glutamatergic signaling,” Discovery Medicine, vol. 14, no. 78, pp. 335–343, 2012. View at Google Scholar
  138. J. J. Dlabač-de Lange, R. Knegtering, and A. Aleman, “Repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: review and meta-analysis,” Journal of Clinical Psychiatry, vol. 71, no. 4, pp. 411–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. R. Prikryl and H. P. Kucerova, “Can repetitive transcranial magnetic stimulation be considered effective treatment option for negative symptoms of schizophrenia?” The Journal of ECT, vol. 29, no. 1, pp. 67–74, 2013. View at Google Scholar
  140. G. P. Strauss, W. R. Keller, R. W. Buchanan et al., “Next-generation negative symptom assessment for clinical trials: validation of the Brief Negative Symptom Scale,” Schizophrenia Research, vol. 142, no. 1–3, pp. 88–92, 2012. View at Google Scholar
  141. P. Allen, F. Larøi, P. K. McGuire, and A. Aleman, “The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations,” Neuroscience and Biobehavioral Reviews, vol. 32, no. 1, pp. 175–191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Vercammen, H. Knegtering, E. J. Liemburg, J. A. D. Boer, and A. Aleman, “Functional connectivity of the temporo-parietal region in schizophrenia: effects of rTMS treatment of auditory hallucinations,” Journal of Psychiatric Research, vol. 44, no. 11, pp. 725–731, 2010. View at Publisher · View at Google Scholar · View at Scopus