Table of Contents
Advances in Neuroscience
Volume 2014 (2014), Article ID 345270, 20 pages
http://dx.doi.org/10.1155/2014/345270
Review Article

Rett Syndrome: Coming to Terms with Treatment

Civitan International Research Center, University of Alabama at Birmingham, 1720 2nd Avenue South, CIRC 320E, Birmingham, AL 35294-0021, USA

Received 5 January 2014; Accepted 26 February 2014; Published 10 April 2014

Academic Editor: Ronald L. Klein

Copyright © 2014 Alan Percy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Rett, “Uber ein eigenartiges hirnatrophisches Syndrom bei Hyperammonamie im Kindesalter,” Wiener Medizinische Wochenschrift, vol. 116, pp. 723–726, 1966. View at Google Scholar
  2. A. Rett, Uber ein cerebral-atrophisches Syndrom bei Hyperammonaemie, Bruder Hollinek, Wien, Germany, 1966.
  3. A. Rett, “Cerebral atrophy associated with hyperammonemia,” in Handbook of Clinical Neurology, P. J. Vincken and G. W. Bruyn, Eds., pp. 305–329, North-Holland Publishing, Amsterdam, The Netherlands, 1977. View at Google Scholar
  4. B. Hagberg, J. Aicardi, K. Dias, and O. Ramos, “A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome. Report of 35 cases,” Annals of Neurology, vol. 14, no. 4, pp. 471–479, 1983. View at Google Scholar · View at Scopus
  5. A. Rett, “Rett syndrome: history and general overview,” American Journal of Medical Genetics, vol. 24, no. 1, pp. 21–25, 1986. View at Google Scholar · View at Scopus
  6. A. K. Percy, H. Zoghbi, and V. M. Riccardi, “Rett syndrome: initial experience with an emerging clinical entity,” Brain and Development, vol. 7, no. 3, pp. 300–304, 1985. View at Google Scholar · View at Scopus
  7. B. Hagberg, F. Goutieres, and F. Hanefeld, “Rett syndrome: criteria for inclusion and exclusion,” Brain and Development, vol. 7, no. 3, pp. 372–373, 1985. View at Google Scholar · View at Scopus
  8. H. Y. Zoghbi, A. K. Percy, and D. G. Glaze, “Reduction of biogenic amine levels in the Rett syndrome,” The New England Journal of Medicine, vol. 313, no. 15, pp. 921–924, 1985. View at Google Scholar · View at Scopus
  9. A. Lekman, I. Witt-Engerstrom, J. Gottfries, B. A. Hagberg, A. K. Percy, and L. Svennerholm, “Rett syndrome: biogenic amines and metabolites in postmortem brain,” Pediatric Neurology, vol. 5, no. 6, pp. 357–362, 1989. View at Publisher · View at Google Scholar · View at Scopus
  10. C. A. Kozinetz, M. L. Skender, N. MacNaughton et al., “Epidemiology of Rett syndrome: a population-based registry,” Pediatrics, vol. 91, no. 2, pp. 445–450, 1993. View at Google Scholar · View at Scopus
  11. D. F. Wong, J. C. Harris, S. Naidu et al., “Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 11, pp. 5539–5543, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. R. J. Schultz, D. G. Glaze, K. J. Motil et al., “The pattern of growth failure in Rett syndrome,” American Journal of Diseases of Children, vol. 147, no. 6, pp. 633–637, 1993. View at Google Scholar · View at Scopus
  13. R. Schultz, D. Glaze, K. Motil, D. Hebert, and A. Percy, “Hand and foot growth failure in Rett syndrome,” Journal of Child Neurology, vol. 13, no. 2, pp. 71–74, 1998. View at Google Scholar · View at Scopus
  14. D. G. Glaze, J. D. Frost Jr., H. Y. Zoghbi, and A. K. Percy, “Rett's syndrome. Correlation of electroencephalographic characteristics with clinical staging,” Archives of Neurology, vol. 44, no. 10, pp. 1053–1056, 1987. View at Google Scholar · View at Scopus
  15. D. G. Glaze, R. J. Schultz, and J. D. Frost, “Rett syndrome: characterization of seizures versus non-seizures,” Electroencephalography and Clinical Neurophysiology, vol. 106, no. 1, pp. 79–83, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Hagne, I. Witt-Engerstrom, and B. Hagberg, “EEG development in Rett syndrome. A study of 30 cases,” Electroencephalography and Clinical Neurophysiology, vol. 72, no. 1, pp. 1–6, 1989. View at Google Scholar · View at Scopus
  17. E. Niedermeyer and S. Naidu, “Further EEG observations in children with the Rett syndrome,” Brain and Development, vol. 12, no. 1, pp. 53–54, 1990. View at Google Scholar · View at Scopus
  18. E. Niedermeyer, A. Rett, and H. Renner, “Rett syndrome and the electroencephalogram,” American Journal of Medical Genetics, vol. 24, supplement 1, pp. 195–199, 1986. View at Google Scholar · View at Scopus
  19. E. Lugaresi, F. Cirignotta, and P. Montagna, “Abnormal breathing in the Rett syndrome,” Brain and Development, vol. 7, no. 3, pp. 329–333, 1985. View at Google Scholar · View at Scopus
  20. D. Glaze, J. Frost, R. Schultz, and A. Percy, “Effect of naloxone on breathing, hand movements, electroencephalogram during wakefulness in patients in rett syndrome,” Annals of Neurology, vol. 26, article 486, 1989. View at Google Scholar
  21. D. G. Glaze, J. D. Frost, H. Y. Zoghbi, and A. K. Percy, “Rett's syndrome: characterization of respiratory patterns and sleep,” Annals of Neurology, vol. 21, no. 4, pp. 377–382, 1987. View at Google Scholar · View at Scopus
  22. C. L. Laurvick, N. de Klerk, C. Bower et al., “Rett syndrome in Australia: a review of the epidemiology,” Journal of Pediatrics, vol. 148, no. 3, pp. 347–352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Hagberg and P. Rasmussen, “‘Forme fruste’ of Rett syndrome. A case report,” American Journal of Medical Genetics, vol. 24, supplement 1, pp. 175–181, 1986. View at Google Scholar · View at Scopus
  24. B. A. Hagberg and O. H. Skjeldal, “Rett variants: a suggested model for inclusion criteria,” Pediatric Neurology, vol. 11, no. 1, pp. 5–11, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Zappella, “The Rett girls with preserved speech,” Brain and Development, vol. 14, no. 2, pp. 98–101, 1992. View at Google Scholar · View at Scopus
  26. O. H. Skjeldal, S. von Tetzchner, K. Jacobsen, L. Smith, and A. Heiberg, “Rett syndrome—distribution of phenotypes with special attention to the preserved speech variant,” Neuropediatrics, vol. 26, no. 2, p. 87, 1995. View at Google Scholar · View at Scopus
  27. F. Hanefeld, B. Hagberg, and A. Percy, “Molecular and neurobiology aspects of Rett syndrome,” Neuropediatrics, vol. 26, no. 2, pp. 60–61, 1995. View at Google Scholar · View at Scopus
  28. H. Y. Zoghbi, A. K. Percy, R. J. Schultz, and C. Fill, “Patterns of X chromosome inactivation in the Rett syndrome,” Brain and Development, vol. 12, no. 1, pp. 131–135, 1990. View at Google Scholar · View at Scopus
  29. H. Y. Zoghbi, D. H. Ledbetter, R. Schultz, A. K. Percy, and D. G. Glaze, “A de novo X;3 translocation in Rett syndrome,” American Journal of Medical Genetics, vol. 35, no. 1, pp. 148–151, 1990. View at Publisher · View at Google Scholar · View at Scopus
  30. N. C. Schanen, E. J. R. Dahle, F. Capozzoli, V. A. Holm, H. Y. Zoghbi, and U. Francke, “A new Rett syndrome family consistent with X-linked inheritance expands the X chromosome exclusion map,” American Journal of Human Genetics, vol. 61, no. 3, pp. 634–641, 1997. View at Google Scholar · View at Scopus
  31. C. Schanen, “A severely affected male born into a Rett syndrome kindred supports X-linked inheritance and allows extension of the exclusion map,” American Journal of Human Genetics, vol. 63, no. 1, pp. 267–269, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. N. C. Schanen, “Molecular approaches to the Rett syndrome gene,” Journal of Child Neurology, vol. 14, no. 12, pp. 806–814, 1999. View at Google Scholar · View at Scopus
  33. N. Sirianni, S. Naidu, J. Pereira, R. F. Pillotto, and E. P. Hoffman, “Rett syndrome: confirmation of X-linked dominant inheritance, and localization of the gene to Xq28,” American Journal of Human Genetics, vol. 63, no. 5, pp. 1552–1558, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. K. A. Ellison, C. P. Fill, J. Terwilliger et al., “Examination of X chromosome markers in Rett syndrome: exclusion mapping with a novel variation on multilocus linkage analysis,” American Journal of Human Genetics, vol. 50, no. 2, pp. 278–287, 1992. View at Google Scholar · View at Scopus
  35. K. A. Ellison, E. J. Roth, E. R. B. McCabe, A. C. Chinault, and H. Y. Zoghbi, “Isolation of a yeast artificial chromosome contig spanning the X chromosomal translocation breakpoint in a patient with Rett syndrome,” American Journal of Medical Genetics, vol. 47, no. 7, pp. 1124–1134, 1993. View at Publisher · View at Google Scholar · View at Scopus
  36. R. E. Amir, I. B. van den Veyver, M. Wan, C. Q. Tran, U. Francke, and H. Y. Zoghbi, “Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2,” Nature Genetics, vol. 23, no. 2, pp. 185–188, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. B. R. Migeon, M. A. Dunn, G. Thomas, B. J. Schmeckpeper, and S. Naidu, “Studies of X inactivation and isodisomy in twins provide further evidence that the X chromosome is not involved in Rett syndrome,” American Journal of Human Genetics, vol. 56, no. 3, pp. 647–653, 1995. View at Google Scholar · View at Scopus
  38. N. Sirianni, S. Naidu, J. Pereira, R. F. Pillotto, and E. P. Hoffman, “Rett syndrome: confirmation of X-linked dominant inheritance, and localization of the gene to Xq28,” American Journal of Human Genetics, vol. 63, no. 5, pp. 1552–1558, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Hendrich and A. Bird, “Identification and characterization of a family of mammalian methyl-CpG binding proteins,” Molecular and Cellular Biology, vol. 18, no. 11, pp. 6538–6547, 1998. View at Google Scholar · View at Scopus
  40. J. Christodoulou, A. Grimm, T. Maher, and B. Bennetts, “RettBASE: the IRSA MECP2 variation database—a new mutation database in evolution,” Human Mutation, vol. 21, no. 5, pp. 466–472, 2003. View at Google Scholar · View at Scopus
  41. M. J. Friez, J. R. Jones, K. Clarkson et al., “Recurrent infections, hypotonia, and mental retardation caused by duplication of MECP2 and adjacent region in Xq28,” Pediatrics, vol. 118, no. 6, pp. e1687–e1695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. A. K. Percy, “Rett syndrome: recent research progress,” Journal of Child Neurology, vol. 23, no. 5, pp. 543–549, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. A. K. Percy, “Rett syndrome: from recognition to diagnosis to intervention,” Expert Review of Endocrinology and Metabolism, vol. 3, no. 3, pp. 327–336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Trevathan and H. W. Moser, “Diagnostic criteria for Rett syndrome,” Annals of Neurology, vol. 23, no. 4, pp. 425–428, 1988. View at Google Scholar · View at Scopus
  45. B. Hagberg, F. Hanefeld, A. Percy, and O. Skjeldal, “An update on clinically applicable diagnostic criteria in Rett syndrome: comments to Rett syndrome clinical criteria consensus panel satellite to European Paediatric Neurology Society Meeting Baden Baden, Germany, 11 September 2001,” European Journal of Paediatric Neurology, vol. 6, no. 5, pp. 293–297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. J. L. Neul, W. E. Kaufmann, D. G. Glaze et al., “Rett syndrome: revised diagnostic criteria and nomenclature,” Annals of Neurology, vol. 68, no. 6, pp. 944–950, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. A. K. Percy, J. L. Neul, D. G. Glaze et al., “Rett syndrome diagnostic criteria: lessons from the Natural History study,” Annals of Neurology, vol. 68, no. 6, pp. 951–955, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Hagberg, Y. Stenbom, and I. Witt Engerström, “Head growth in Rett syndrome,” Acta Paediatrica, International Journal of Paediatrics, vol. 89, no. 2, pp. 198–202, 2000. View at Google Scholar · View at Scopus
  49. D. C. Tarquinio, K. J. Motil, W. Hou et al., “Growth failure and outcome in Rett syndrome: specific growth references,” Neurology, vol. 79, no. 16, pp. 1653–1661, 2012. View at Google Scholar
  50. C. Philippe, L. Villard, N. de Roux et al., “Spectrum and distribution of MECP2 mutations in 424 Rett syndrome patients: a molecular update,” European Journal of Medical Genetics, vol. 49, no. 1, pp. 9–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Quenard, S. Yilmaz, H. Fontaine et al., “eleterious mutations in exon 1 of MECP2 in Rett syndrome,” European Journal of Medical Genetics, vol. 49, no. 4, pp. 313–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. I. Kim, Y. Kim, B. Son et al., “Diagnostic mutational analysis of MECP2 in Korean patients with Rett syndrome,” Experimental and Molecular Medicine, vol. 38, no. 2, pp. 119–125, 2006. View at Google Scholar · View at Scopus
  53. D. Zahorakova, R. Rosipal, J. Hadac et al., “Mutation analysis of the MECP2 gene in patients of Slavic origin with Rett syndrome: novel mutations and polymorphisms,” Journal of Human Genetics, vol. 52, no. 4, pp. 342–348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Sampieri, I. Meloni, E. Scala et al., “Italian Rett database and biobank,” Human Mutation, vol. 28, no. 4, pp. 329–335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Abuhatzira, K. Makedonski, Y. P. Galil et al., “Splicing mutation associated with Rett syndrome and an experimental approach for genetic diagnosis,” Human Genetics, vol. 118, no. 1, pp. 91–98, 2005. View at Google Scholar · View at Scopus
  56. R. Khajuria, S. Sapra, M. Ghosh et al., “Rapid detection of deletions in hotspot C-terminal segment region of MECP2 by routine PCR method: report of two classical Rett syndrome patients of Indian origin,” Genetic Testing and Molecular Biomarkers, vol. 13, no. 2, pp. 277–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Li, H. Pan, X. Bao, Y. Zhang, and X. Wu, “MECP2 and CDKL5 gene mutation analysis in Chinese patients with Rett syndrome,” Journal of Human Genetics, vol. 52, no. 1, pp. 38–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. K. A. Percy, B. J. Lane, J. Childers et al., “Rett syndrome: North American database,” Journal of Child Neurology, vol. 22, no. 12, pp. 1338–1341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Bienvenu, L. Villard, N. de Roux et al., “Spectrum of MECP2 mutations in Rett syndrome,” Genetic Testing, vol. 6, no. 1, pp. 1–6, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. I. M. Buyse, P. Fang, K. T. Hoon, R. E. Amir, H. Y. Zoghbi, and B. B. Roa, “Diagnostic testing for Rett syndrome by DHPLC and direct sequencing analysis of the MECP2 gene: identification of several novel mutations and polymorphisms,” American Journal of Human Genetics, vol. 67, no. 6, pp. 1428–1436, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. V. Bourdon, C. Philippe, O. Labrune, D. Amsallem, C. Arnould, and P. Jonveaux, “A detailed analysis of the MECP2 gene: prevalence of recurrent mutations and gross DNA rearrangements in Rett syndrome patients,” Human Genetics, vol. 108, no. 1, pp. 43–50, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. R. C. Samaco, R. P. Nagarajan, D. Braunschweig, and J. M. LaSalle, “Multiple pathways regulate MECP2 expression in normal brain development and exhibit defects in autism-spectrum disorders,” Human Molecular Genetics, vol. 13, no. 6, pp. 629–639, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Shibayama, E. H. Cook Jr., J. Feng et al., “MECP2 structural and 3′-UTR variants in schizophrenia autism and other psychiatric diseases: a possible association with autism,” American Journal of Medical Genetics B: Neuropsychiatric Genetics, vol. 128, no. 1, pp. 50–53, 2004. View at Google Scholar · View at Scopus
  64. K. Augenstein, J. B. Lane, A. Horton, C. Schanen, and A. K. Percy, “Variable phenotypic expression of a MECP2 mutation in a family,” Journal of Neurodevelopmental Disorders, vol. 1, no. 4, article 313, 2009. View at Google Scholar
  65. J. S. Schwartzman, A. Bernardino, A. Nishimura, R. R. Gomes, and M. Zatz, “Rett syndrome in a boy with a 47,XXY karyotype confirmed by a rare mutation in the MECP2 gene,” Neuropediatrics, vol. 32, no. 3, pp. 162–164, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. J. S. Schwartzman, M. Zatz, L. dos Reis Vasquez et al., “Rett syndrome in a boy with a 47,XXY karyotype,” American Journal of Human Genetics, vol. 64, no. 6, pp. 1781–1785, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. S. G. Vorsanova, Y. B. Yurov, V. Y. Ulas et al., “Cytogenetic and molecular-cytogenetic studies of Rett syndrome (RTT): a retrospective analysis of a Russian cohort of RTT patients (the investigation of 57 girls and three boys),” Brain and Development, vol. 23, supplement 1, pp. S196–S201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Clayton-Smith, P. Watson, S. Ramsden, and G. C. M. Black, “Somatic mutation in MECP2 as a non-fatal neurodevelopmental disorder in males,” The Lancet, vol. 356, no. 9232, pp. 830–832, 2000. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Villard, “MECP2 mutations in males,” Journal of Medical Genetics, vol. 44, no. 7, pp. 417–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Kankirawatana, H. Leonard, C. Ellaway et al., “Early progressive encephalopathy in boys and MECP2 mutations,” Neurology, vol. 67, no. 1, pp. 164–166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Ylisaukko-Oja, K. Rehnström, R. Vanhala et al., “MECP2 mutation analysis in patients with mental retardation,” American Journal of Medical Genetics, vol. 132, no. 2, pp. 121–124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Lugtenberg, A. P. M. de Brouwer, T. Kleefstra et al., “Chromosomal copy number changes in patients with non-syndromic X linked mental retardation detected by array CGH,” Journal of Medical Genetics, vol. 43, no. 4, pp. 362–370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. D. Lugtenberg, T. Kleefstra, A. R. Oudakker et al., “Structural variation in Xq28: MECP2 duplications in 1% of patients with unexplained XLMR and in 2% of male patients with severe encephalopathy,” European Journal of Human Genetics, vol. 17, no. 4, pp. 444–453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. H. van Esch, M. Bauters, J. Ignatius et al., “Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males,” American Journal of Human Genetics, vol. 77, no. 3, pp. 442–453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. M. B. Ramocki, S. U. Peters, Y. J. Tavyev et al., “Autism and other neuropsychiatric symptoms are prevalent in individuals with MECP2 duplication syndrome,” Annals of Neurology, vol. 66, no. 6, pp. 771–782, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. M. B. Ramocki, Y. J. Tavyev, and S. U. Peters, “The MECP2 duplication syndrome,” American Journal of Medical Genetics A, vol. 152, no. 5, pp. 1079–1088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. S. U. Peters, R. J. Hundley, A. K. Wilson et al., “The behavioral phenotype in MECP2 duplication syndrome: a comparison with idiopathic autism,” Autism Research, vol. 6, no. 1, pp. 42–50, 2013. View at Google Scholar
  78. B. Hagberg and I. Witt-Engerstrom, “Rett syndrome: a suggested staging system for describing impairment profile with increasing age towards adolescence,” American Journal of Medical Genetics, vol. 24, supplement 1, pp. 47–59, 1986. View at Google Scholar · View at Scopus
  79. C. A. Chapleau, J. Lane, J. Larrimore, W. Li, L. Pozzo-Miller, and A. Percy, “Recent progress in Rett syndrome and MECP2 dysfunction: assessment of potwntial treatment options,” Future Neurology, vol. 8, pp. 21–28, 2013. View at Google Scholar
  80. P. M. Baptista, M. T. Mercadante, E. C. Macedo, and J. S. Schwartzman, “Cognitive performance in Rett syndrome girls: a pilot study using eyetracking technology,” Journal of Intellectual Disability Research, vol. 50, part 9, pp. 662–666, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Djukic and M. V. McDermott, “Social preferences in Rett syndrome,” Pediatric Neurology, vol. 46, no. 4, pp. 240–242, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Djukic, M. V. McDermott, K. Mavrommatis, and C. L. Martins, “Rett syndrome: basic features of visual processing: a pilot study of eye-tracking,” Pediatric Neurology, vol. 47, no. 1, pp. 25–29, 2012. View at Google Scholar
  83. D. G. Glaze, “Neurophysiology of Rett syndrome,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 8, no. 2, pp. 66–71, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. D. G. Glaze, “Neurophysiology of Rett syndrome,” Journal of Child Neurology, vol. 20, no. 9, pp. 740–746, 2005. View at Google Scholar · View at Scopus
  85. D. G. Glaze, A. K. Percy, S. Skinner et al., “Epilepsy and the natural history of Rett syndrome,” Neurology, vol. 74, no. 11, pp. 909–912, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. E. E. J. Smeets, P. O. O. Julu, D. van Waardenburg et al., “Management of a severe forceful breather with Rett Syndrome using carbogen,” Brain and Development, vol. 28, no. 10, pp. 625–632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. A. K. Percy, “Clinical trials and treatment prospects,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 8, no. 2, pp. 106–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. A. K. Percy, D. G. Glaze, R. J. Schultz et al., “Rett syndrome: controlled study of an oral opiate antagonist, naltrexone,” Annals of Neurology, vol. 35, no. 4, pp. 464–470, 1994. View at Google Scholar · View at Scopus
  89. E. E. Hagebeuk, R. P. Bijlmer, J. H. Koelman, and B. T. Poll-The, “Respiratory disturbances in rett syndrome: don't forget to evaluate upper airway obstruction,” Journal of Child Neurology, vol. 27, no. 7, pp. 888–892, 2012. View at Google Scholar
  90. K. J. Motil, R. J. Schultz, W. W. Wang, and D. G. Glaze, “Increased energy expenditure associated with repetitive involuntary movement does not contribute to growth failure in girls with Rett syndrome,” Journal of Pediatrics, vol. 132, no. 2, pp. 228–233, 1998. View at Publisher · View at Google Scholar · View at Scopus
  91. K. J. Motil, R. Schultz, B. Brown, D. G. Glaze, and A. K. Percy, “Altered energy balance may account for growth failure in Rett syndrome,” Journal of Child Neurology, vol. 9, no. 3, pp. 315–319, 1994. View at Google Scholar · View at Scopus
  92. K. J. Motil, R. J. Schultz, K. Browning, L. Trautwein, and D. G. Glaze, “Oropharyngeal dysfunction and gastroesophageal dysmotility are present in girls and women with Rett syndrome,” Journal of Pediatric Gastroenterology and Nutrition, vol. 29, no. 1, pp. 31–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. K. J. Motil, E. Caeg, J. O. Barrish et al., “Gastrointestinal and nutritional problems occur frequently throughout life in girls and women with rett syndrome,” Journal of Pediatric Gastroenterology and Nutrition, vol. 55, no. 3, pp. 292–298, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. K. J. Motil, M. Morrissey, E. Caeg, J. O. Barrish, and D. G. Glaze, “Gastrostomy placement improves height and weight gain in girls with rett syndrome,” Journal of Pediatric Gastroenterology and Nutrition, vol. 49, no. 2, pp. 237–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. G. S. Bassett and V. T. Tolo, “The incidence and natural history of scoliosis in Rett syndrome,” Developmental Medicine and Child Neurology, vol. 32, no. 11, pp. 963–966, 1990. View at Google Scholar · View at Scopus
  96. S. Ager, S. Fyfe, J. Christodoulou, P. Jacoby, L. Schmitt, and H. Leonard, “Predictors of scoliosis in Rett syndrome,” Journal of Child Neurology, vol. 21, no. 9, pp. 809–813, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Stokland, J. Lidstrom, and B. Hagberg, “Scoliosis in Rett Syndrome,” in Rett Syndrome—Clinical & Biological Aspects, B. Hagberg, Ed., pp. 61–71, Mac Keith Press, London, UK, 1993. View at Google Scholar
  98. J. Lidstrom, E. Stokland, and B. Hagberg, “Scoliosis in Rett syndrome: clinical and biological aspects,” Spine, vol. 19, no. 14, pp. 1632–1635, 1994. View at Google Scholar · View at Scopus
  99. A. M. Kerr, P. Webb, R. J. Prescott, and Y. Milne, “Results of surgery for scoliosis in Rett syndrome,” Journal of Child Neurology, vol. 18, no. 10, pp. 703–708, 2003. View at Google Scholar · View at Scopus
  100. D. J. Harrison and P. J. Webb, “Scoliosis in the Rett syndrome: natural history and treatment,” Brain and Development, vol. 12, no. 1, pp. 154–156, 1990. View at Google Scholar · View at Scopus
  101. V. A. Holm and H. A. King, “Scoliosis in the Rett syndrome,” Brain and Development, vol. 12, no. 1, pp. 151–153, 1990. View at Google Scholar · View at Scopus
  102. A. K. Percy, H. Lee, J. L. Neul et al., “Profiling scoliosis in rett syndrome,” Pediatric Research, vol. 67, no. 4, pp. 435–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Downs, A. Bergman, P. Carter et al., “Guidelines for management of scoliosis in rett syndrome patients based on expert consensus and clinical evidence,” Spine, vol. 34, no. 17, pp. E607–E617, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. J. B. Lane, H.-S. Lee, L. W. Smith et al., “Clinical severity and quality of life in children and adolescents with Rett syndrome,” Neurology, vol. 77, no. 20, pp. 1812–1818, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Freilinger, A. Bebbington, I. Lanator et al., “Survival with Rett syndrome: comparing Rett's original sample with data from the Australian Rett Syndrome Database,” Developmental Medicine and Child Neurology, vol. 52, no. 10, pp. 962–965, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. R. S. Kirby, J. B. Lane, J. Childers et al., “Longevity in Rett Syndrome: analysis of the North American database,” Journal of Pediatrics, vol. 156, no. 1, pp. 135–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. M. D. McCauley, T. Wang, E. Mike et al., “Rett syndrome: pathogenesis of lethal cardiac arrhythmias in MECP2 mutant mice: implication for therapy in Rett syndrome,” Science Translational Medicine, vol. 3, no. 113, Article ID 113ra125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. E. A. Sekul, J. P. Moak, R. J. Schultz, D. G. Glaze, and A. K. Percy, “Electrocardiographic findings in Rett syndrome: an explanation for sudden death?” Journal of Pediatrics, vol. 125, no. 1, pp. 80–82, 1994. View at Publisher · View at Google Scholar · View at Scopus
  109. D. D. Armstrong, “Review of Rett syndrome,” Journal of Neuropathology and Experimental Neurology, vol. 56, no. 8, pp. 843–849, 1997. View at Google Scholar · View at Scopus
  110. D. Armstrong, “Recent developments in neuropathology—electron microscopy—brain pathology,” European Child and Adolescent Psychiatry, vol. 6, supplement 1, pp. 69–70, 1997. View at Google Scholar · View at Scopus
  111. D. Armstrong, J. K. Dunn, B. Antalffy, and R. Trivedi, “Selective dendritic alterations in the cortex of Rett syndrome,” Journal of Neuropathology and Experimental Neurology, vol. 54, no. 2, pp. 195–201, 1995. View at Google Scholar · View at Scopus
  112. D. D. Armstrong, “The neuropathology of the Rett syndrome,” Brain and Development, vol. 14, supplement, pp. S89–S98, 1992. View at Google Scholar · View at Scopus
  113. D. D. Armstrong, “The neuropathology of Rett syndrome—overview 1994,” Neuropediatrics, vol. 26, no. 2, pp. 100–104, 1995. View at Google Scholar · View at Scopus
  114. D. D. Armstrong, “Rett syndrome neuropathology review 2000,” Brain and Development, vol. 23, supplement 1, pp. S72–S76, 2000. View at Google Scholar · View at Scopus
  115. D. D. Armstrong, “Neuropathology of Rett syndrome,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 8, no. 2, pp. 72–76, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. D. D. Armstrong, “Neuropathology of Rett syndrome,” Journal of Child Neurology, vol. 20, no. 9, pp. 747–753, 2005. View at Google Scholar · View at Scopus
  117. D. D. Armstrong, K. Dunn, and B. Antalffy, “Decreased dendritic branching in frontal, motor and limbic cortex in Rett Syndrome compared with Trisomy 21,” Journal of Neuropathology and Experimental Neurology, vol. 57, no. 11, pp. 1013–1017, 1998. View at Google Scholar · View at Scopus
  118. K. Jellinger, D. Armstrong, H. Y. Zoghbi, and A. K. Percy, “Neuropathology of Rett syndrome,” Acta Neuropathologica, vol. 76, no. 2, pp. 142–158, 1988. View at Google Scholar · View at Scopus
  119. K. Jellinger and F. Seitelberger, “Neuropathology of Rett syndrome,” American Journal of Medical Genetics, vol. 24, supplement 1, pp. 259–288, 1986. View at Google Scholar · View at Scopus
  120. K. Jellinger, D. Armstrong, H. Zoghbi, and A. Percy, “The Rett Syndrome: an overview,” in Movement Disorders in Neurology and Neuropsychiatry, A. B. Joseph and R. Young, Eds., pp. 667–678, Blackwell Scientific Publications, 1992. View at Google Scholar
  121. K. A. Jellinger, “Rett syndrome—an update: review,” Journal of Neural Transmission, vol. 110, no. 6, pp. 681–701, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. A. L. Reiss, F. Faruque, S. Naidu et al., “Neuroanatomy of Rett syndrome: a volumetric imaging study,” Annals of Neurology, vol. 34, no. 2, pp. 227–234, 1993. View at Google Scholar · View at Scopus
  123. A. Percy, J. Dragich, and N. Schanen, “Rett Syndrome: clinical-molecular correlates,” in Genetics and Genomics of Neurobehavioral Disorders, G. Fisch, Ed., pp. 391–418, Humana Press, Totowa, NJ, USA, 2003. View at Google Scholar
  124. J. C. Evans, H. L. Archer, S. D. Whatley, and A. Clarke, “Germline mosaicism for a MECP2 mutation in a man with two Rett daughters,” Clinical Genetics, vol. 70, no. 4, pp. 336–338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Dragich, I. Houwink-Manville, and C. Schanen, “Rett syndrome: a surprising result of mutation in MECP2,” Human Molecular Genetics, vol. 9, no. 16, pp. 2365–2375, 2000. View at Google Scholar · View at Scopus
  126. C. Schanen, E. J. F. Houwink, N. Dorrani et al., “Phenotypic manifestations of MECP2 mutations in classical and atypical Rett Syndrome,” American Journal of Medical Genetics A, vol. 126, no. 2, pp. 129–140, 2004. View at Google Scholar · View at Scopus
  127. A. Bebbington, A. Anderson, D. Ravine et al., “Investigating genotype-phenotype relationships in Rett syndrome using an international data set,” Neurology, vol. 70, no. 11, pp. 868–875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Bebbington, A. Percy, J. Christodoulou et al., “Updating the profile of C-terminal MECP2 deletions in Rett syndrome,” Journal of Medical Genetics, vol. 47, no. 4, pp. 242–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. J. L. Neul, P. Fang, J. Barrish et al., “Specific mutations in Methyl-CpG-Binding Protein 2 confer different severity in Rett syndrome,” Neurology, vol. 70, no. 16, pp. 1313–1321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. G. Pini, S. Bigoni, I. Engerström et al., “Variant of rett syndrome and CDKL5 gene: clinical and autonomic description of 10 cases,” Neuropediatrics, vol. 43, no. 1, pp. 37–43, 2012. View at Publisher · View at Google Scholar · View at Scopus
  131. N. Rademacher, M. Hambrock, U. Fischer et al., “Identification of a novel CDKL5 exon and pathogenic mutations in patients with severe mental retardation, early-onset seizures and rett-like features,” Neurogenetics, vol. 12, no. 2, pp. 165–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. F. Ariani, G. Hayek, D. Rondinella et al., “FOXG1 is responsible for the congenital variant of Rett Syndrome,” American Journal of Human Genetics, vol. 83, no. 1, pp. 89–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. C. Philippe, D. Amsallem, C. Francannet et al., “Phenotypic variability in Rett syndrome associated with FOXG1 mutations in females,” Journal of Medical Genetics, vol. 47, no. 1, pp. 59–65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. H. L. Archer, J. C. Evans, D. S. Millar et al., “NTNG1 mutations are a rare cause of Rett syndrome,” American Journal of Medical Genetics A, vol. 140, no. 7, pp. 691–694, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. M. Chahrour, Y. J. Sung, C. Shaw et al., “MECP2, a key contributor to neurological disease, activates and represses transcription,” Science, vol. 320, no. 5880, pp. 1224–1229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. W. Li, G. Calfa, J. Larimore, and L. Pozzo-Miller, “Activity-dependent BDNF release and TRPC signaling is impaired in hippocampal neurons of MECP2 mutant mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 42, pp. 17087–17092, 2012. View at Google Scholar
  137. B. E. McGill, S. F. Bundle, M. B. Yaylaoglu, J. P. Carson, C. Thaller, and H. Y. Zoghbi, “Enhanced anxiety and stress-induced corticosterone release are associated with increased Crh expression in a mouse model of Rett syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 48, pp. 18267–18272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. C. Garcia-Rudaz, V. Deng, V. Matagne et al., “FXYD1, a modulator of Na+, K+-ATPase activity, facilitates female sexual development by maintaining gonadotrophin-releasing hormone neuronal excitability,” Journal of Neuroendocrinology, vol. 21, no. 2, pp. 108–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. J. Guy, B. Hendrich, M. Holmes, J. E. Martin, and A. Bird, “A mouse MECP2-null mutation causes neurological symptoms that mimic rett syndrome,” Nature Genetics, vol. 27, no. 3, pp. 322–326, 2001. View at Publisher · View at Google Scholar · View at Scopus
  140. R. Z. Chen, S. Akbarian, M. Tudor, and R. Jaenisch, “Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice,” Nature Genetics, vol. 27, no. 3, pp. 327–331, 2001. View at Publisher · View at Google Scholar · View at Scopus
  141. G. J. Pelka, C. M. Watson, T. Radziewic et al., “MECP2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice,” Brain, vol. 129, no. 4, pp. 887–898, 2006. View at Publisher · View at Google Scholar · View at Scopus
  142. R. C. Samaco, C. Mandel-Brehm, H. Chao et al., “Loss of MECP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 51, pp. 21966–21971, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. H. Chao, H. Chen, R. C. Samaco et al., “Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes,” Nature, vol. 468, no. 7321, pp. 263–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. D. T. Lioy, S. K. Garg, C. E. Monaghan et al., “A role for glia in the progression of Rett-syndrome,” Nature, vol. 475, no. 7357, pp. 497–500, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. M. D. Shahbazian, J. I. Young, L. A. Yuva-Paylor et al., “Mice with truncated MECP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3,” Neuron, vol. 35, no. 2, pp. 243–254, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. A. Lawson-Yuen, D. Liu, L. Han et al., “Ube3a mRNA and protein expression are not decreased in MECP2R168X mutant mice,” Brain Research, vol. 1180, no. 1, pp. 1–6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. G. M. Jentarra, S. L. Olfers, S. G. Rice et al., “Abnormalities of cell packing density and dendritic complexity in the MECP2 A140V mouse model of Rett syndrome/X-linked mental retardation,” BMC Neuroscience, vol. 11, article 19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. C. Brendel, V. Belakhov, H. Werner et al., “Readthrough of nonsense mutations in Rett syndrome: evaluation of novel aminoglycosides and generation of a new mouse model,” Journal of Molecular Medicine, vol. 89, no. 4, pp. 389–398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. D. Goffin, M. Allen, L. Zhang et al., “Rett syndrome mutation MECP2 T158A disrupts DNA binding, protein stability and ERP responses,” Nature Neuroscience, vol. 15, no. 2, pp. 274–283, 2012. View at Publisher · View at Google Scholar · View at Scopus
  150. D. M. Katz, J. E. Berger-Sweeney, J. H. Eubanks et al., “Preclinical research in Rett syndrome: setting the foundation for translational success,” Disease Models and Mechanisms, vol. 5, no. 6, pp. 733–745, 2012. View at Google Scholar
  151. W. Li and L. Pozzo-Miller, “Beyond widespread MECP2 deletions to model Rett syndrome: conditional spatio-temporal knockout, single-point mutations and transgenic rescue mice,” Autism, supplement 1, pp. 1–10, 2012. View at Google Scholar
  152. S. L. Fyffe, J. L. Neul, R. C. Samaco et al., “Deletion of MECP2 in Sim1-expressing neurons reveals a critical role for MECP2 in feeding behavior, aggression, and the response to stress,” Neuron, vol. 59, no. 6, pp. 947–958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. R. C. Samaco, C. M. McGraw, C. S. Ward, Y. Sun, J. L. Neul, and H. Y. Zoghbi, “Female MECP2(+/-) mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies,” Human Molecular Genetics, vol. 22, no. 1, pp. 96–109, 2013. View at Google Scholar
  154. M. A. Toward, A. P. Abdala, S. J. Knopp, J. F. Paton, and J. M. Bissonnette, “Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (MECP2)-deficient mice,” Experimental Physiology, vol. 98, no. 3, pp. 842–849, 2013. View at Google Scholar
  155. C. M. Buchovecky, S. D. Turley, H. M. Brown et al., “A suppressor screen in MECP2 mutant mice implicates cholesterol metabolism in Rett syndrome,” Nature Genetics, vol. 45, pp. 1013–1020, 2013. View at Google Scholar
  156. J. Guy, J. Gan, J. Selfridge, S. Cobb, and A. Bird, “Reversal of neurological defects in a mouse model of Rett syndrome,” Science, vol. 315, no. 5815, pp. 1143–1147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  157. J. M. LaSalle, J. Goldstine, D. Balmer, and C. M. Greco, “Quantitative localization of heterogeneous methyl-CpG-binding protein 2 (MECP2) expression phenotypes in normal and Rett syndrome brain by laser scanning cytometry,” Human Molecular Genetics, vol. 10, no. 17, pp. 1729–1740, 2001. View at Google Scholar · View at Scopus
  158. N. Ballas, D. T. Lioy, C. Grunseich, and G. Mandel, “Non-cell autonomous influence of MECP2-deficient glia on neuronal dendritic morphology,” Nature Neuroscience, vol. 12, no. 3, pp. 311–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. J. W. Pan, J. B. Lane, H. Hetherington, and A. K. Percy, “Rett syndrome: 1H spectroscopic imaging at 4.1 Tesla,” Journal of Child Neurology, vol. 14, no. 8, pp. 524–528, 1999. View at Google Scholar · View at Scopus
  160. M. E. Blue, W. E. Kaufmann, J. Bressler et al., “Temporal and regional alterations in NMDA receptor expression in MECP2-null mice,” Anatomical Record, vol. 294, no. 10, pp. 1624–1634, 2011. View at Publisher · View at Google Scholar · View at Scopus
  161. M. V. Johnston, O. Jeon, J. Pevsner, M. E. Blue, and S. Naidu, “Neurobiology of Rett syndrome: a genetic disorder of synapse development,” Brain and Development, vol. 23, supplement 1, pp. S206–S213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  162. G. Calfa, J. J. Hablitz, and L. Pozzo-Miller, “Network hyperexcitability in hippocampal slices from MECP2 mutant mice revealed by voltage-sensitive dye imaging,” Journal of Neurophysiology, vol. 105, no. 4, pp. 1768–1784, 2011. View at Publisher · View at Google Scholar · View at Scopus
  163. G. Calfa, A. K. Percy, and L. Pozzo-Miller, “Experimental models of rett syndrome based on MECP2 dysfunction,” Experimental Biology and Medicine, vol. 236, no. 1, pp. 3–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. S.-M. Weng, F. McLeod, M. E. S. Bailey, and S. R. Cobb, “Synaptic plasticity deficits in an experimental model of rett syndrome: long-term potentiation saturation and its pharmacological reversal,” Neuroscience, vol. 180, pp. 314–321, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. W. Li and L. Pozzo-Miller, “BDNF deregulation in Rett syndrome,” Neuropharmacology, vol. 76, pp. 737–746, 2014. View at Publisher · View at Google Scholar
  166. J. L. Larimore, C. A. Chapleau, S. Kudo, A. Theibert, A. K. Percy, and L. Pozzo-Miller, “Bdnf overexpression in hippocampal neurons prevents dendritic atrophy caused by Rett-associated MECP2 mutations,” Neurobiology of Disease, vol. 34, no. 2, pp. 199–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. H. Wang, S. Chan, M. Ogier et al., “Dysregulation of brain-derived neurotrophic factor expression and neurosecretory function in MECP2 null mice,” The Journal of Neuroscience, vol. 26, no. 42, pp. 10911–10915, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. M. Ogier, H. Wang, E. Hong, Q. Wang, M. E. Greenberg, and D. M. Katz, “Brain-derived neurotrophic factor expression and respiratory function improve after ampakine treatment in a mouse model of Rett syndrome,” The Journal of Neuroscience, vol. 27, no. 40, pp. 10912–10917, 2007. View at Publisher · View at Google Scholar · View at Scopus
  169. D. D. Kline, M. Ogier, D. L. Kunze, and D. M. Katz, “Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in MECP2-null mice,” The Journal of Neuroscience, vol. 30, no. 15, pp. 5303–5310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  170. D. A. Schmid, T. Yang, M. Ogier et al., “A TrkB small molecule partial agonist rescues TrkB phosphorylation deficits and improves respiratory function in a mouse model of rett syndrome,” The Journal of Neuroscience, vol. 32, no. 5, pp. 1803–1810, 2012. View at Publisher · View at Google Scholar · View at Scopus
  171. R. A. Johnson, M. Lam, A. M. Punzo et al., “7,8-dihydroxyflavone exhibits therapeutic efficacy in a mouse model of Rett syndrome,” Journal of Applied Physiology, vol. 112, no. 5, pp. 704–710, 2012. View at Publisher · View at Google Scholar · View at Scopus
  172. D. Tropea, E. Giacometti, N. R. Wilson et al., “Partial reversal of Rett Syndrome-like symptoms in MECP2 mutant mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 6, pp. 2029–2034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. M. C. N. Marchetto, C. Carromeu, A. Acab et al., “A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells,” Cell, vol. 143, no. 4, pp. 527–539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  174. C. Brendel, E. Klahold, J. Gärtner, and P. Huppke, “Suppression of nonsense mutations in Rett syndrome by aminoglycoside antibiotics,” Pediatric Research, vol. 65, no. 5, pp. 520–523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  175. A. C. Popescu, E. Sidorova, G. Zhang, and J. H. Eubanks, “Aminoglycoside-mediated partial suppression of MECP2 nonsense mutations responsible for Rett syndrome in vitro,” The Journal of Neuroscience Research, vol. 88, no. 11, pp. 2316–2324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  176. N. C. Derecki, J. C. Cronk, Z. Lu et al., “Wild-type microglia arrest pathology in a mouse model of Rett syndrome,” Nature, vol. 484, no. 7392, pp. 105–109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  177. N. C. Derecki, J. C. Cronk, and J. Kipnis, “The role of microglia in brain maintenance: implications for Rett syndrome,” Trends in Immunology, vol. 34, no. 3, pp. 144–150, 2013. View at Google Scholar
  178. S. K. Garg, D. T. Lioy, H. Cheval et al., “Systemic delivery of MECP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome,” The Journal of Neuroscience, vol. 33, no. 34, pp. 13612–13620, 2013. View at Google Scholar