Table of Contents
Advances in Neuroscience
Volume 2014 (2014), Article ID 462765, 28 pages
http://dx.doi.org/10.1155/2014/462765
Review Article

Structure-Function Relationships behind the Phenomenon of Cognitive Resilience in Neurology: Insights for Neuroscience and Medicine

Laboratory of Functional Imaging (LIF), INSERM U678S, 91 Boulevard de l’Hôpital, 75013 Paris, France

Received 2 December 2013; Revised 7 April 2014; Accepted 8 April 2014; Published 4 August 2014

Academic Editor: Jan Gläscher

Copyright © 2014 David Rudrauf. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Luria, The Man with a Shattered World: The History of a Brain Wound, Harvard University Press, Cambridge, Mass, USA, 1987.
  2. U. Noppeney, K. J. Friston, and C. J. Price, “Degenerate neuronal systems sustaining cognitive functions,” Journal of Anatomy, vol. 205, no. 6, pp. 433–442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. L. Philippi, J. S. Feinstein, S. S. Khalsa et al., “Preserved self-awareness following extensive bilateral brain damage to the insula, anterior cingulate, and medial prefrontal cortices,” PLoS ONE, vol. 7, no. 8, Article ID e38413, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Laureys, M. Boly, and P. Maquet, “Tracking the recovery of consciousness from coma,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1823–1825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Owen, M. R. Coleman, M. Boly, M. H. Davis, S. Laureys, and J. D. Pickard, “Detecting awareness in the vegetative state,” Science, vol. 313, no. 5792, p. 1402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. M. Monti, A. Vanhaudenhuyse, M. R. Coleman et al., “Willful modulation of brain activity in disorders of consciousness,” The New England Journal of Medicine, vol. 362, no. 7, pp. 579–589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Sacks, Awakenings, Pelican Books, Harmondsworth, UK, 1976.
  8. Y. Stern, “Cognitive reserve,” Neuropsychologia, vol. 47, no. 10, pp. 2015–2028, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Dubois, H. H. Feldman, C. Jacova et al., “Revising the definition of Alzheimer’s disease: a new lexicon,” The Lancet Neurology, vol. 9, no. 11, pp. 1118–1127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. F. de Oliveira, F. C. G. Pinto, K. Nishikuni, R. V. Botelho, A. M. Lima, and J. M. Rotta, “Revisiting hydrocephalus as a model to study brain resilience,” Frontiers in Human Neuroscience, vol. 5, article 181, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Stern, “Cognitive reserve and Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 20, no. 2, pp. 112–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Williford, D. Rudrauf, and C. L. Philippi, “Self-consciousness,” in Encyclopedia of the Mind, Sage, Thousand Oaks, Calif, USA, 2011. View at Google Scholar
  13. S. S. Khalsa, D. Rudrauf, J. S. Feinstein, and D. Tranel, “The pathways of interoceptive awareness,” Nature Neuroscience, vol. 12, no. 12, pp. 1494–1496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. G. M. Edelman and J. A. Gally, “Degeneracy and complexity in biological systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 13763–13768, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. R. G. Lee and P. van Donkelaar, “Mechanisms underlying functional recovery following stroke,” Canadian Journal of Neurological Sciences, vol. 22, no. 4, pp. 257–263, 1995. View at Google Scholar · View at Scopus
  16. D. Rudrauf and A. Damasio, “A conjecture regarding the biological mechanism of subjectivity and feeling,” Journal of Consciousness Studies, vol. 12, no. 8–10, pp. 236–262, 2005. View at Google Scholar · View at Scopus
  17. S. Paradiso and D. Rudrauf, “Struggle for life, struggle for love and recognition: the neglected self in social cognitive neuroscience,” Dialogues in Clinical Neuroscience, vol. 14, no. 1, pp. 65–75, 2012. View at Google Scholar · View at Scopus
  18. W. Penfield, “Neurophysiological basis of the higher functions of the nervous system,” in Handbook of Physiology; A Critical, Comprehensive Presentation of Physiological Knowledge and Concepts, L. S. Jefferson, A. D. Cherrington, and H. M. Goodman, Eds., vol. 6, p. 1254, Oxford University Press, New York, NY, USA, 1960. View at Google Scholar
  19. A. Damasio, The Feeling of What Happens: Body and Emotion in the Making of Consciousness, Harvest Books, 1999.
  20. L. Feuillet, H. Dufour, and J. Pelletier, “Brain of a white-collar worker,” The Lancet, vol. 370, no. 9583, p. 262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Damasio and A. Damasio, Lesion Analysis in Neuropsychology, Oxford University Press, New York, NY, USA, 1989.
  22. D. Rudrauf, S. Mehta, J. Bruss, D. Tranel, H. Damasio, and T. J. Grabowski, “Thresholding lesion overlap difference maps: application to category-related naming and recognition deficits,” NeuroImage, vol. 41, no. 3, pp. 970–984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Rudrauf, S. Mehta, and T. J. Grabowski, “Disconnection’s renaissance takes shape: formal incorporation in group-level lesion studies,” Cortex, vol. 44, no. 8, pp. 1084–1096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. C. Cirstea and M. F. Levin, “Compensatory strategies for reaching in stroke,” Brain, vol. 123, part 5, pp. 940–953, 2000. View at Publisher · View at Google Scholar
  25. A. R. Damasio, Descartes’ Error: Emotion, Reason and the Human Brain, Grosset/Putnam, New York, NY, USA, 1994.
  26. M. Catani and D. H. Ffytche, “The rises and falls of disconnection syndromes,” Brain, vol. 128, no. 10, pp. 2224–2239, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. D. Craig, “Human feelings: why are some more aware than others?” Trends in Cognitive Sciences, vol. 8, no. 6, pp. 239–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. A. D. Craig, “How do you feel—now? The anterior insula and human awareness,” Nature Reviews Neuroscience, vol. 10, no. 1, pp. 59–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Z. Goldstein, A. D. Craig, A. Bechara et al., “The neurocircuitry of impaired insight in drug addiction,” Trends in Cognitive Sciences, vol. 13, no. 9, pp. 372–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Singer, H. D. Critchley, and K. Preuschoff, “A common role of insula in feelings, empathy and uncertainty,” Trends in Cognitive Sciences, vol. 13, no. 8, pp. 334–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. A. Gusnard, E. Akbudak, G. L. Shulman, and M. E. Raichle, “Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 4259–4264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. A. W. M. Kelley, C. N. Macrae, C. L. Wyland, S. Caglar, S. Inati, and T. F. Heatherton, “Finding the self? An event-related fMRI study,” Journal of Cognitive Neuroscience, vol. 14, no. 5, pp. 785–794, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. D. M. Amodio and C. D. Frith, “Meeting of minds: the medial frontal cortex and social cognition,” Nature Reviews Neuroscience, vol. 7, no. 4, pp. 268–277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. C. L. Philippi, M. C. Duff, N. L. Denburg, D. Tranel, and D. Rudrauf, “Medial PFC damage abolishes the self-reference effect,” Journal of Cognitive Neuroscience, vol. 24, no. 2, pp. 475–481, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. J. S. Feinstein, D. Rudrauf, S. S. Khalsa et al., “Bilateral limbic system destruction in man,” Journal of Clinical and Experimental Neuropsychology, vol. 32, no. 1, pp. 88–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. R. L. Buckner, J. R. Andrews-Hanna, and D. L. Schacter, “The brain’s default network: anatomy, function, and relevance to disease,” Annals of the New York Academy of Sciences, vol. 1124, pp. 1–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Damasio, Self Comes to Mind, Constructing the Conscious Brain, Random House, 2011.
  38. A. Damasio, H. Damasio, and D. Tranel, “Persistence of feelings and sentience after bilateral damage of the insula,” Cerebral Cortex, vol. 23, no. 4, pp. 833–846, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. J. S. Feinstein, “Lesion studies of human emotion and feeling,” Current Opinion in Neurobiology, vol. 23, no. 3, pp. 304–309, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. J. S. Feinstein, C. Buzza, R. Hurlemann et al., “Fear and panic in humans with bilateral amygdala damage,” Nature Neuroscience, vol. 16, no. 3, pp. 270–272, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. B. A. Wilson, M. Kopelman, and N. Kapur, “Prominent and persistent loss of past awareness in amnesia: delusion, impaired consciousness or coping strategy?” Neuropsychological Rehabilitation, vol. 18, no. 5-6, pp. 527–540, 2008. View at Publisher · View at Google Scholar
  42. S. Laureys, J. T. Giacino, N. D. Schiff, M. Schabus, and A. M. Owen, “How should functional imaging of patients with disorders of consciousness contribute to their clinical rehabilitation needs?” Current Opinion in Neurology, vol. 19, no. 6, pp. 520–527, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Laureys and G. Tononi, The Neurology of Consciousness, Academic Press, London, UK, 2009.
  44. A. Owen, N. Schiff, and S. Laureys, “The assessment of conscious awareness in the vegetative state,” in The Neurology of Consciousness, S. Laureys and G. Tononi, Eds., pp. 163–172, Academic Press, London, UK, 2009. View at Google Scholar
  45. M. Boly, L. Tshibanda, A. Vanhaudenhuyse et al., “Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient,” Human Brain Mapping, vol. 30, no. 8, pp. 2393–2400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Vanhaudenhuyse, Q. Noirhomme, L. J.-F. Tshibanda et al., “Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients,” Brain, vol. 133, no. 1, pp. 161–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Giacino and N. Schiff, “The minimally conscious state: clinical features, pathophysiology and therapeutic implications,” in The Neurology of Consciousness, S. Laureys and G. Tononi, Eds., pp. 173–190, Academic Press, London, UK, 2009. View at Google Scholar
  48. J. T. Giacino and K. Kalmar, “The vegetative and minimally conscious states: a comparison of clinical features and functional outcome,” Journal of Head Trauma Rehabilitation, vol. 12, no. 4, pp. 36–51, 1997. View at Google Scholar · View at Scopus
  49. B. T. Hyman, H. Damasio, A. R. Damasio, and G. W. van Hoesen, “Alzheimer’s disease,” Annual Review of Public Health, vol. 10, pp. 115–140, 1989. View at Google Scholar · View at Scopus
  50. C. R. Jack Jr., D. S. Knopman, W. J. Jagust et al., “Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade,” The Lancet Neurology, vol. 9, no. 1, pp. 119–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Babinski, “Anosognosia,” The Journal of Nervous and Mental Disease, vol. 51, article 70, 1920. View at Google Scholar
  52. S. Banks and S. Weintraub, “Self-awareness and self-monitoring of cognitive and behavioral deficits in behavioral variant frontotemporal dementia, primary progressive aphasia and probable Alzheimer’s disease,” Brain and Cognition, vol. 67, no. 1, pp. 58–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. S. E. Starkstein, R. Jorge, R. Mizrahi, J. Adrian, and R. G. Robinson, “Insight and danger in Alzheimer’s disease,” European Journal of Neurology, vol. 14, no. 4, pp. 455–460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. S. E. Starkstein, S. Brockman, D. Bruce, and G. Petracca, “Anosognosia is a significant predictor of apathy in Alzheimer’s disease,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 22, no. 4, pp. 378–383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Spalletta, P. Girardi, C. Caltagirone, and M. D. Orfei, “Anosognosia and neuropsychiatric symptoms and disorders in mild alzheimer disease and mild cognitive impairment,” Journal of Alzheimer’s Disease, vol. 29, no. 4, pp. 761–772, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. M. J. Al-Aloucy, R. Cotteret, P. Thomas, M. Volteau, I. Benmaou, and G. Dalla Barba, “Unawareness of memory impairment and behavioral abnormalities in patients with Alzheimer’s disease: relation to professional health care burden,” Journal of Nutrition, Health and Aging, vol. 15, no. 5, pp. 356–360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. M. W. Weiner, D. P. Veitch, P. S. Aisen et al., “The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception,” Alzheimer’s and Dementia, vol. 8, supplement 1, pp. S1–S68, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. S. E. Arnold, B. T. Hyman, J. Flory, A. R. Damasio, and G. W. van Hoesen, “The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with alzheimer’s disease,” Cerebral Cortex, vol. 1, no. 1, pp. 103–116, 1991. View at Google Scholar · View at Scopus
  59. M.-C. de Lacoste and C. L. White III, “The role of cortical connectivity in Alzheimer’s disease pathogenesis: a review and model system,” Neurobiology of Aging, vol. 14, no. 1, pp. 1–16, 1993. View at Google Scholar · View at Scopus
  60. S. M. Landau, D. Harvey, C. M. Madison et al., “Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI,” Neurobiology of Aging, vol. 32, no. 7, pp. 1207–1218, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Parvizi, G. W. van Hoesen, and A. Damasio, “Severe pathological changes of parabrachial nucleus in Alzheimer’s disease,” NeuroReport, vol. 9, no. 18, pp. 4151–154, 1998. View at Google Scholar · View at Scopus
  62. J. Parvizi, G. W. van Hoesen, and A. Damasio, “Selective pathological changes of the periaqueductal gray matter in Alzheimer’s disease,” Annals of Neurology, vol. 48, no. 3, pp. 344–353, 2000. View at Google Scholar
  63. X. Delbeuck, M. van der Linden, and F. Collette, “Alzheimer’s disease as a disconnection syndrome?” Neuropsychology Review, vol. 13, no. 2, pp. 79–92, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. X. Delbeuck, F. Collette, and M. van der Linden, “Is Alzheimer’s disease a disconnection syndrome?. Evidence from a crossmodal audio-visual illusory experiment,” Neuropsychologia, vol. 45, no. 14, pp. 3315–3323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. He, Z. Chen, G. Gong, and A. Evans, “Neuronal networks in Alzheimer’s disease,” Neuroscientist, vol. 15, no. 4, pp. 333–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Filippi and F. Agosta, “Structural and functional network connectivity breakdown in Alzheimer’s disease studied with magnetic resonance imaging techniques,” Journal of Alzheimer’s Disease, vol. 24, no. 3, pp. 455–474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Xie and Y. He, “Mapping the Alzheimer’s brain with connectomics,” Frontiers in Psychiatry, vol. 2, article 77, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Neufang, A. Akhrif, V. Riedl et al., “Disconnection of frontal and parietal areas contributes to impaired attention in very early Alzheimer's disease,” Journal of Alzheimer's, vol. 25, no. 2, pp. 309–321, 2011. View at Publisher · View at Google Scholar
  69. M. Pievani, F. Agosta, E. Pagani et al., “Assessment of white matter tract damage in mild cognitive impairment and Alzheimer’s disease,” Human Brain Mapping, vol. 31, no. 12, pp. 1862–1875, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. J. L. Price and J. C. Morris, “Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease,” Annals of Neurology, vol. 45, no. 3, pp. 358–368, 1999. View at Google Scholar
  71. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS), “Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales,” The Lancet, vol. 357, no. 9251, pp. 169–175, 2001. View at Publisher · View at Google Scholar
  72. J. Steffener and Y. Stern, “Exploring the neural basis of cognitive reserve in aging,” Biochimica et Biophysica Acta: Molecular Basis of Disease, vol. 1822, no. 3, pp. 467–473, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. Stern, B. Gurland, T. K. Tatemichi, M. X. Tang, D. Wilder, and R. Mayeux, “Influence of education and occupation on the incidence of Alzheimer’s disease,” Journal of the American Medical Association, vol. 271, no. 13, pp. 1004–1010, 1994. View at Publisher · View at Google Scholar · View at Scopus
  74. M. J. Valenzuela and P. Sachdev, “Brain reserve and dementia: a systematic review,” Psychological Medicine, vol. 36, no. 4, pp. 441–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Braak and E. Braak, “Neuropathological stageing of Alzheimer-related changes,” Acta Neuropathologica, vol. 82, no. 4, pp. 239–259, 1991. View at Google Scholar · View at Scopus
  76. C. M. Roe, M. A. Mintun, G. D’Angelo, C. Xiong, E. A. Grant, and J. C. Morris, “Alzheimer disease and cognitive reserve: variation of education effect with carbon 11-labeled pittsburgh compound B uptake,” Archives of Neurology, vol. 65, no. 11, pp. 1467–1471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. D. A. Bennett, R. S. Wilson, J. A. Schneider et al., “Education modifies the relation of AD pathology to level of cognitive function in older persons,” Neurology, vol. 60, no. 12, pp. 1909–1915, 2003. View at Google Scholar · View at Scopus
  78. M. B. Spitznagel and G. Tremont, “Cognitive reserve and anosognosia in questionable and mild dementia,” Archives of Clinical Neuropsychology, vol. 20, no. 4, pp. 505–515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Gläscher, D. Rudrauf, R. Colom et al., “Distributed neural system for general intelligence revealed by lesion mapping,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 10, pp. 4705–4709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Chen, L. G. Cohen, and M. Hallett, “Nervous system reorganization following injury,” Neuroscience, vol. 111, no. 4, pp. 761–773, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Marrelec, A. Krainik, H. Duffau et al., “Partial correlation for functional brain interactivity investigation in functional MRI,” NeuroImage, vol. 32, no. 1, pp. 228–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. A. R. Carter, S. V. Astafiev, C. E. Lang et al., “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Annals of Neurology, vol. 67, no. 3, pp. 365–375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. E. M. Nomura, C. Gratton, R. M. Visser, A. Kayser, F. Perez, and M. D’Esposito, “Double dissociation of two cognitive control networks in patients with focal brain lesions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 26, pp. 12017–12022, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Boly, V. Perlbarg, G. Marrelec et al., “Hierarchical clustering of brain activity during human nonrapid eye movement sleep,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 15, pp. 5856–5861, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 27, pp. 9673–9678, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Boly, C. Phillips, E. Balteau et al., “Consciousness and cerebral baseline activity fluctuations,” Human Brain Mapping, vol. 29, no. 7, pp. 868–874, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Cauda, B. M. Micon, K. Sacco et al., “Disrupted intrinsic functional connectivity in the vegetative state,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 4, pp. 429–431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. W. W. Seeley, V. Menon, A. F. Schatzberg et al., “Dissociable intrinsic connectivity networks for salience processing and executive control,” Journal of Neuroscience, vol. 27, no. 9, pp. 2349–2356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. V. L. Morgan, A. Mishra, A. T. Newton, J. C. Gore, and Z. Ding, “Integrating functional and diffusion magnetic resonance imaging for analysis of structure-function relationship in the human language network,” PLoS ONE, vol. 4, no. 8, Article ID e6660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Lohmann, S. Hoehl, J. Brauer et al., “Setting the frame: the human brain activates a basic low-frequency network for language processing,” Cerebral Cortex, vol. 20, no. 6, pp. 1286–1292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. D. Zhang and M. E. Raichle, “Disease and the brain’s dark energy,” Nature Reviews Neurology, vol. 6, no. 1, pp. 15–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. F. Agosta, M. Pievani, C. Geroldi, M. Copetti, G. B. Frisoni, and M. Filippi, “Resting state fMRI in Alzheimer’s disease: beyond the default mode network,” Neurobiology of Aging, vol. 33, no. 8, pp. 1564–1578, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. C. J. Stam, W. de Haan, A. Daffertshofer et al., “Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease,” Brain, vol. 132, no. 1, pp. 213–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. H.-Y. Zhang, S.-J. Wang, B. Liu et al., “Resting brain connectivity: changes during the progress of Alzheimer disease,” Radiology, vol. 256, no. 2, pp. 598–606, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Sorg, V. Riedl, M. Mühlau et al., “Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18760–18765, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. T. Nakamura, F. G. Hillary, and B. B. Biswal, “Resting network plasticity following brain injury,” PLoS ONE, vol. 4, no. 12, Article ID e8220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. D. J. Sharp, C. F. Beckmann, R. Greenwood et al., “Default mode network functional and structural connectivity after traumatic brain injury,” Brain, vol. 134, no. 8, pp. 2233–2247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. R. L. Buckner, J. Sepulcre, T. Talukdar et al., “Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease,” Journal of Neuroscience, vol. 29, no. 6, pp. 1860–1873, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. J. S. Damoiseaux, C. F. Beckmann, E. J. S. Arigita et al., “Reduced resting-state brain activity in the “default network” in normal aging,” Cerebral Cortex, vol. 18, no. 8, pp. 1856–1864, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Ystad, E. Hodneland, S. Adolfsdottir et al., “Cortico-striatal connectivity and cognition in normal aging: a combined DTI and resting state fMRI study,” NeuroImage, vol. 55, no. 1, pp. 24–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. C. J. Honey, J.-P. Thivierge, and O. Sporns, “Can structure predict function in the human brain?” NeuroImage, vol. 52, no. 3, pp. 766–776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Messé, D. Rudrauf, H. Benali, and G. Marrelec, “Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities,” PLoS Computational Biology, vol. 10, no. 3, Article ID e1003530, 2014. View at Publisher · View at Google Scholar
  103. J. S. Damoiseaux and M. D. Greicius, “Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity,” Brain Structure & Function, vol. 213, no. 6, pp. 525–533, 2009. View at Google Scholar · View at Scopus
  104. L. Q. Uddin, E. Mooshagian, E. Zaidel et al., “Residual functional connectivity in the split-brain revealed with resting-state functional MRI,” NeuroReport, vol. 19, no. 7, pp. 703–709, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Michael Tyszka, D. P. Kennedy, R. Adolphs, and L. K. Paul, “Intact bilateral resting-state networks in the absence of the corpus callosum,” Journal of Neuroscience, vol. 31, no. 42, pp. 15154–15162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. M. J. Lowe, B. J. Mock, and J. A. Sorenson, “Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations,” NeuroImage, vol. 7, no. 2, pp. 119–132, 1998. View at Publisher · View at Google Scholar · View at Scopus
  107. J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof et al., “Consistent resting-state networks across healthy subjects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 37, pp. 13848–13853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. Y. Nir, U. Hasson, I. Levy, Y. Yeshurun, and R. Malach, “Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation,” NeuroImage, vol. 30, no. 4, pp. 1313–1324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. S. Chen, T. J. Ross, W. Zhan et al., “Group independent component analysis reveals consistent resting-state networks across multiple sessions,” Brain Research, vol. 1239, pp. 141–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. B. J. He, A. Z. Snyder, J. L. Vincent, A. Epstein, G. L. Shulman, and M. Corbetta, “Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect,” Neuron, vol. 53, no. 6, pp. 905–918, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. A. del Cul, S. Dehaene, P. Reyes, E. Bravo, and A. Slachevsky, “Causal role of prefrontal cortex in the threshold for access to consciousness,” Brain, vol. 132, no. 9, pp. 2531–2540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Wang, X. Zuo, and Y. He, “Graph-based network analysis of resting-state functional MRI,” Frontiers in Systems Neuroscience, vol. 4, article 16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. F. Bartolomei, I. Bosma, M. Klein et al., “Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices,” Clinical Neurophysiology, vol. 117, no. 9, pp. 2039–2049, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. F. Bartolomei, I. Bosma, M. Klein et al., “How do brain tumors alter functional connectivity? A magnetoencephalography study,” Annals of Neurology, vol. 59, no. 1, pp. 128–138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. S. C. Ponten, F. Bartolomei, and C. J. Stam, “Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures,” Clinical Neurophysiology, vol. 118, no. 4, pp. 918–927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. S. D. Roosendaal, M. M. Schoonheim, H. E. Hulst et al., “Resting state networks change in clinically isolated syndrome,” Brain, vol. 133, no. 6, pp. 1612–1621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. D. Rudrauf, A. Douiri, C. Kovach et al., “Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals,” NeuroImage, vol. 31, no. 1, pp. 209–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. P. Comon and C. Jutten, Handbook of Blind Source Separation, Independent Component Analysis and Applications, Academic Press, Oxford, UK, 2010.
  119. D. O. Hebb, “Distinctive features of learning in the higher animal,” in Brain Mechanisms and Learning, J. F. Delafresnaye, Ed., Oxford University Press, London, UK, 1961. View at Google Scholar
  120. K. I. Diamantras and S. Y. Kung, Principal Component Neural Networks, John Wiley & Sons, New York, NY, USA, 1996.
  121. A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Computation, vol. 7, no. 6, pp. 1129–1159, 1995. View at Google Scholar · View at Scopus
  122. S. Mesmoudi, V. Perlbarg, D. Rudrauf et al., “Resting state networks' corticotopy: the dual intertwined rings architecture,” PLoS ONE, vol. 8, no. 7, Article ID e67444, 2013. View at Publisher · View at Google Scholar
  123. T. Cover and J. Thomas, Elements of Information Theory, John Wiley & Sons, New York, NY, USA edition, 1991.
  124. C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948. View at Publisher · View at Google Scholar
  125. O. Sporns, “The human connectome: a complex network,” Annals of the New York Academy of Sciences, vol. 1224, no. 1, pp. 109–125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. N. T. Markov, M. Ercsey-Ravasz, D. C. van Essen, K. Knoblauch, Z. Toroczkai, and H. Kennedy, “Cortical high-density counterstream architectures,” Science, vol. 342, no. 6158, Article ID 1238406, 2013. View at Publisher · View at Google Scholar
  127. G. Tononi, “An information integration theory of consciousness,” BMC Neuroscience, vol. 5, article 42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome, “Context-dependent computation by recurrent dynamics in prefrontal cortex,” Nature, vol. 503, no. 7474, pp. 78–84, 2013. View at Publisher · View at Google Scholar
  129. R. Cabeza, “Hemispheric asymmetry reduction in older adults: the HAROLD model,” Psychology and Aging, vol. 17, no. 1, pp. 85–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Domínguez-Borràs, J. L. Armony, A. Maravita, J. Driver, and P. Vuilleumier, “Partial recovery of visual extinction by pavlovian conditioning in a patient with hemispatial neglect,” Cortex, vol. 49, no. 3, pp. 891–898, 2013. View at Publisher · View at Google Scholar · View at Scopus
  131. I. H. Robertson, “A noradrenergic theory of cognitive reserve: implications for Alzheimer’s disease,” Neurobiology of Aging, vol. 34, no. 1, pp. 298–308, 2013. View at Publisher · View at Google Scholar · View at Scopus
  132. R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, Elsevier, 2nd edition, 2012.
  133. G. J. Goodhill and H. G. Barrow, “The role of weight normalization in competitive learning,” Neural Computation, vol. 6, no. 2, pp. 255–269, 1994. View at Publisher · View at Google Scholar
  134. D. Neumann, Connectivity of the brain from magnetic resonance imaging [Ph.D. dissertation], California Institute of Technology, 2010, http://resolver.caltech.edu/CaltechTHESIS:04282010-153942989.
  135. G. Tononi and C. Cirelli, “Sleep function and synaptic homeostasis,” Sleep Medicine Reviews, vol. 10, no. 1, pp. 49–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. D. Rudrauf, A. Lutz, D. Cosmelli, J.-P. Lachaux, and M. Le Van Quyen, “From autopoiesis to neurophenomenology: Francisco Varela’s exploration of the biophysics of being,” Biological Research, vol. 36, no. 1, pp. 27–65, 2003. View at Google Scholar · View at Scopus
  137. S. Dehaene, M. Kerszberg, and J.-P. Changeux, “A neuronal model of a global workspace in effortful cognitive tasks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14529–14534, 1998. View at Publisher · View at Google Scholar · View at Scopus
  138. F. Varela, J.-P. Lachaux, E. Rodriguez, and J. Martinerie, “The brainweb: phase synchronization and large-scale integration,” Nature Reviews Neuroscience, vol. 2, no. 4, pp. 229–239, 2001. View at Publisher · View at Google Scholar · View at Scopus
  139. K. Friston, “The free-energy principle: a rough guide to the brain?” Trends in Cognitive Sciences, vol. 13, no. 7, pp. 293–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. K. Friston, “The free-energy principle: a unified brain theory?” Nature Reviews Neuroscience, vol. 11, no. 2, pp. 127–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. M. V. J. Veenman, Intellectual Ability and Metacognitive Skill: Determinants of Discovery Learning in Computerized Learning Environments, University of Amsterdam, 1993.
  142. K. Williford, D. Rudrauf, and G. Landini, “The paradoxes of subjectivity and the projective structure of consciousness,” in Consciousness and Subjectivity, S. Miguens and G. Preyer, Eds., Ontos, Frankfurt, Germany, 2012. View at Google Scholar
  143. D. A. Stanley and R. Adolphs, “Toward a neural basis for social behavior,” Neuron, vol. 80, no. 3, pp. 816–826, 2013. View at Publisher · View at Google Scholar
  144. J. K. O’Regan and A. Noë, “A sensorimotor account of vision and visual consciousness,” Behavioral and Brain Sciences, vol. 24, no. 5, pp. 939–1031, 2001. View at Google Scholar · View at Scopus
  145. D. Rudrauf, A. Lutz, D. Cosmelli, J.-P. Lachaux, and M. Le Van Quyen, “From autopoiesis to neurophenomenology: Francisco Varela's exploration of the biophysics of being,” Biological Research, vol. 36, no. 1, pp. 27–65, 2003. View at Google Scholar
  146. R. Goldberg, “Survey of virtual machine research,” IEEE Computer, vol. 7, no. 6, pp. 34–45, 1974. View at Publisher · View at Google Scholar
  147. D. C. Dennett, Consciousness Explained, Little, Brown and Company, Boston, Mass, USA, 1991.
  148. T. J. Sejnowski, C. Koch, and P. S. Churchland, “Computational neuroscience,” Science, vol. 241, no. 4871, pp. 1299–1306, 1988. View at Google Scholar · View at Scopus
  149. P. S. Churchland and T. J. Sejnowski, The Computational Brain, MIT Press, Cambridge, Mass, USA, 1992.
  150. J. von Neumann, First Draft of a Report on the EDVAC, United States Army Ordnance Department, University of Pennsylvania, 1945.
  151. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943. View at Publisher · View at Google Scholar · View at Scopus
  152. Y. He, L. Wang, Y. Zang et al., “Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study,” NeuroImage, vol. 35, no. 2, pp. 488–500, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. N. Villain, B. Desgranges, F. Viader et al., “Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer’s disease,” Journal of Neuroscience, vol. 28, no. 24, pp. 6174–6181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. L. A. Beckett, D. J. Harvey, A. Gamst et al., “The Alzheimer’s Disease Neuroimaging Initiative: annual change in biomarkers and clinical outcomes,” Alzheimer’s and Dementia, vol. 6, no. 3, pp. 257–264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. Y. Li, Y. Wang, G. Wu et al., “Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features,” Neurobiology of Aging, vol. 33, no. 2, pp. 427.e15–427.e30, 2012. View at Publisher · View at Google Scholar · View at Scopus
  156. D. T. Jones, M. M. MacHulda, P. Vemuri et al., “Age-related changes in the default mode network are more advanced in Alzheimer disease,” Neurology, vol. 77, no. 16, pp. 1524–1531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. O. Lazarov, J. Robinson, Y.-P. Tang et al., “Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice,” Cell, vol. 120, no. 5, pp. 701–713, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. S. M. Smith, P. T. Fox, K. L. Miller et al., “Correspondence of the brain’s functional architecture during activation and rest,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 13040–13045, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. P. Goel, A. Kuceyeski, E. Locastro, and A. Raj, “Spatial patterns of genome-wide expression profiles reflect anatomic and fiber connectivity architecture of healthy human brain,” Human Brain Mapping, 2014. View at Publisher · View at Google Scholar