Table of Contents
Advances in Optical Technologies
Volume 2011, Article ID 510186, 9 pages
http://dx.doi.org/10.1155/2011/510186
Research Article

Laser-Combined Scanning Tunneling Microscopy on the Carrier Dynamics in Low-Temperature-Grown GaAs/AlGaAs/GaAs

Institute of Applied Physics, University of Tsukuba, Tsukuba 307-8573, Japan

Received 31 May 2011; Accepted 26 August 2011

Academic Editor: Qingming Luo

Copyright © 2011 Yasuhiko Terada et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Shinada, S. Okamoto, T. Kobayashi, and I. Ohdomari, “Enhancing semiconductor device performance using ordered dopant arrays,” Nature, vol. 437, no. 7062, pp. 1128–1131, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. B. Cheng, S. Roy, G. Roy, F. Adamu-Lema, and A. Asenov, “Impact of intrinsic parameter fluctuations in decanano MOSFETs on yield and functionality of SRAM cells,” Solid-State Electronics, vol. 49, no. 5, pp. 740–746, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. I. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, “Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors,” Journal of Applied Physics, vol. 80, no. 3, pp. 1567–1577, 1996. View at Google Scholar · View at Scopus
  4. R. J. Hamers and D. G. Cahill, “Ultrafast time resolution in scanned probe microscopies,” Applied Physics Letters, vol. 57, no. 19, pp. 2031–2033, 1990. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Nunes Jr. and M. R. Freeman, “Picosecond resolution in scanning tunneling microscopy,” Science, vol. 262, no. 5136, pp. 1029–1032, 1993. View at Google Scholar · View at Scopus
  6. G. M. Sleeves, A. Y. Elezzabi, and M. R. Freeman, “Advances in picosecond scanning tunneling microscopy via junction mixing,” Applied Physics Letters, vol. 70, no. 14, pp. 1909–1911, 1997. View at Google Scholar · View at Scopus
  7. S. Grafström, P. Schuller, J. Kowalski, and R. Nuemann, “Thermal expansion of scanning tunneling microscopy tips under laser illumination,” Journal of Applied Physics, vol. 83, pp. 3453–3460, 1998. View at Publisher · View at Google Scholar
  8. J. Jersch, F. Demming, I. Fedotov, and K. Dickmann, “Time-resolved current response of a nanosecond laser pulse illuminated STM tip,” Applied Physics A, vol. 68, no. 6, pp. 637–641, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Gerstner, A. Knoll, W. Pfeiffer, A. Thon, and G. Gerber, “Femtosecond laser assisted scanning tunneling microscopy,” Journal of Applied Physics, vol. 88, no. 8, pp. 4851–4859, 2000. View at Google Scholar · View at Scopus
  10. N. N. Khusnatdinov, T. J. Nagle, and G. Nunes, “Ultrafast scanning tunneling microscopy with 1 nm resolution,” Applied Physics Letters, vol. 77, no. 26, pp. 4434–4436, 2000. View at Google Scholar · View at Scopus
  11. S. Loth, M. Etzkorn, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, “Measurement of fast electron spin relaxation times with atomic resolution,” Science, vol. 329, no. 5999, pp. 1628–1630, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. W. Wu and W. Ho, “Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope,” Physical Review B, vol. 82, Article ID 085444, 8 pages, 2010. View at Publisher · View at Google Scholar
  13. Y. Terada, S. Yoshida, O. Takeuchi, and H. Shigekawa, “Real-space imaging of transient carrier dynamics by nanoscale pumpg-probe microscopy,” Nature Photonics, vol. 4, no. 12, pp. 869–874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Takeuchi, R. Morita, M. Yamashita, and H. Shigekawa, “Development of time-resolved scanning tunneling microscopy in femtosecond range,” Japanese Journal of Applied Physics, vol. 41, no. 7B, pp. 4994–4997, 2002. View at Google Scholar · View at Scopus
  15. O. Takeuchi, M. Aoyama, R. Oshima et al., “Probing subpicosecond dynamics using pulsed laser combined scanning tunneling microscopy,” Applied Physics Letters, vol. 85, no. 15, p. 3268, 2004. View at Publisher · View at Google Scholar
  16. O. Takeuchi, M. Aoyama, and H. Shigekawa, “Analysis of time-resolved tunnel current signal in sub-picosecond range observed by shaken-pulse-pair-excited scanning tunneling miscroscopy,” Japanese Journal of Applied Physics, vol. 44, no. 7B, pp. 5354–5357, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Takeuchi, M. Aoyama, H. Kondo, A. Taninaka, Y. Terada, and H. Shigekawa, “Nonlinear dependences in pulse-pair-excited scanning tunneling microscopy,” Japanese Journal of Applied Physics, vol. 45, no. 3B, pp. 1926–1930, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Terada, M. Aoyama, H. Kondo, A. Taninaka, O. Takeuchi, and H. Shigekawa, “Ultrafast photoinduced carrier dynamics in GaNAs probed using femtosecond time-resolved scanning tunnelling microscopy,” Nanotechnology, vol. 18, no. 4, Article ID 044028, 2007. View at Publisher · View at Google Scholar
  19. H. Shigekawa, S. Yoshida, O. Takeuchi et al., “Nanoscale dynamics probed by laser-combined scanning tunneling microscopy,” Thin Solid Films, vol. 516, no. 9, pp. 2348–2357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Terada, S. Yoshida, O. Takeuchi, and H. Shigekawa, “Laser-combined scanning tunnelling microscopy for probing ultrafast transient dynamics,” Journal of Physics: Condensed Matter, vol. 22, no. 26, Article ID 264008, 2010. View at Publisher · View at Google Scholar · View at PubMed
  21. H. Shigekawa, O. Takeuchi, Y. Terada, and S. Yoshida, “STM based techniques combined with optics,” in Handbook of Nanophysics, K. D. Sattler, Ed., vol. 6 of Principles and Methods, Taylor & Francis, 2010. View at Google Scholar
  22. O. Takeuchi, S. Yoshida, and H. Shigekawa, “Light-modulated scanning tunneling spectroscopy for nanoscale imaging of surface photovoltage,” Applied Physics Letters, vol. 84, no. 18, pp. 3645–3647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Yoshida, Y. Kanitani, R. Oshima, Y. Okada, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the mechanism of carrier dynamics in an operating p-n junction examined by using light-modulated scanning tunneling spectroscopy,” Physical Review Letters, vol. 98, no. 2, Article ID 026802, 2007. View at Publisher · View at Google Scholar
  24. S. Yoshida, Y. Kanitani, O. Takeuchi, and H. Shigekawa, “Probing nanoscale potential modulation by defect-induced gap states on GaAs(110) with light-modulated scanning tunneling spectroscopy,” Applied Physics Letters, vol. 92, no. 10, Article ID 102105, 2008. View at Publisher · View at Google Scholar
  25. S. Yoshida, Y. Kanitani, R. Oshima, Y. Okada, O. Takeuchi, and H. Shigekawa, “Nanoscale mapping of built-in potential in GaAs p-n junction using light-modulated scanning tunneling microscopy,” Japanese Journal of Applied Physics, vol. 47, no. 7, pp. 6117–6120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. McEllistrem, G. Haase, D. Chen, and R. J. Hamers, “Electrostatic sample-tip interactions in the scanning tunneling microscope,” Physical Review Letters, vol. 70, no. 16, pp. 2471–2474, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Grafström, “Photoassisted scanning tunneling microscopy,” Journal of Applied Physics, vol. 91, no. 4, pp. 1717–1753, 2002. View at Google Scholar
  28. L. Kronik and Y. Shapira, “Surface photovoltage phenomena: theory, experiment, and applications,” Surface Science Reports, vol. 37, no. 1, pp. 1–206, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. D. G. Cahill and R. J. Hamers, “Scanning tunneling microscopy of photoexcited carriers at the Si(001) surface,” Journal of Vacuum Science & Technology B, vol. 9, no. 2, pp. 564–568, 1991. View at Publisher · View at Google Scholar
  30. Ch. Sommerhalter, Th. W. Matthes, J. Boneberg, P. Leiderer, and M. C. Lux-Steiner, “Tunneling spectroscopy on semiconductors with a low surface state density,” Journal of Vacuum Science & Technology B, vol. 15, no. 6, pp. 1876–1883, 1997. View at Google Scholar · View at Scopus
  31. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, Springer, Berlin, Germany, 1999.
  32. A. Othonos, “Probing ultrafast carrier and phonon dynamics in semiconductors,” Journal of Applied Physics, vol. 83, no. 4, pp. 1789–1830, 1998. View at Google Scholar · View at Scopus
  33. S. Gupta, M. Y. Frankel, J. A. Valdmanis et al., “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Applied Physics Letters, vol. 59, no. 25, pp. 3276–3278, 1991. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Yano, Y. Hirayama, S. Miyashita, H. Sasabu, N. Uesugi, and S. Uehara, “Pump-probe spectroscopy of low-temperature grown gaAs for carrier lifetime estimation: arsenic pressure dependence of carrier lifetime during MBE crystal growth,” Physics Letters A, vol. 289, no. 1-2, pp. 93–98, 2001. View at Publisher · View at Google Scholar · View at Scopus