Table of Contents
Advances in Optical Technologies
Volume 2011, Article ID 723901, 11 pages
http://dx.doi.org/10.1155/2011/723901
Research Article

Mechanical Action of Inhomogeneously Polarized Optical Fields and Detection of the Internal Energy Flows

1Physical Department, Odessa I.I. Mechnikov National University, Dvorianska 2, Odessa 65082, Ukraine
2Correlation Optics Department, Chernivtsi National University, Kotsyubinsky Str. 2, Chernivtsi 58012, Ukraine

Received 20 May 2011; Accepted 22 July 2011

Academic Editor: Mikhail Noginov

Copyright © 2011 A. Ya. Bekshaev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Padgett and L. Allen, “The Poynting vector in Laguerre-Gaussian laser modes,” Optics Communications, vol. 121, no. 1–3, pp. 36–40, 1995. View at Google Scholar · View at Scopus
  2. L. Allen and M. J. Padgett, “The poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Optics Communications, vol. 184, no. 1, pp. 67–71, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: “Optical Vortex”,” Optics and Spectroscopy, vol. 88, no. 2, pp. 260–265, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. V. A. Pas'ko, M. S. Soskin, and M. V. Vasnetsov, “Transversal optical vortex,” Optics Communications, vol. 198, no. 1–3, pp. 49–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” Journal of Optics B, vol. 6, no. 5, pp. S404–S409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Bekshaev and M. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Optics Letters, vol. 31, no. 14, pp. 2199–2201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Mokhun, A. Mokhun, and J. Viktorovskaya, “Singularities of the Poynting vector and the structure of optical field,” in Seventh International Conference on Correlation Optics, vol. 6254 of Proceedings of SPIE, pp. 73–82, 2006. View at Publisher · View at Google Scholar
  8. I. I. Mokhun, “Introduction to linear singular optics,” in Optical Correlation Techniques and Applications, O. V. Angelsky, Ed., pp. 1–132, SPIE Optical Engineering Press, Bellingham, Wash, USA, 2007. View at Google Scholar
  9. A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Optics Communications, vol. 271, no. 2, pp. 332–348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Bekshaev and M. Soskin, “Transverse energy flows in vectorial fields of paraxial light beams,” in Coherent and Nonlinear Optical Phenomena, vol. 6729 of Proceedings of SPIE, Minsk, Belarus, May 2007. View at Publisher · View at Google Scholar
  11. A. Ya. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” in 7th International Conference on Correlation Optics, vol. 6254 of Proceedings of SPIE, pp. 56–63, 2006. View at Publisher · View at Google Scholar
  12. A. Bekshaev and M. Vasnetsov, “Vortex flow of light: “Spin” and “orbital” flows in a circularly polarized paraxial beam,” in Twisted Photons. Applications of Light with Orbital Angular Momentum, pp. 13–24, Wiley-VCH, Weinheim, Germany, 2011. View at Google Scholar
  13. A. Y. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” Journal of Optics A, vol. 11, no. 9, Article ID 094003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. V. Berry, “Optical currents,” Journal of Optics A, vol. 11, no. 9, Article ID 094001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. V. Novitsky and L. M. Barkovsky, “Poynting singularities in optical dynamic systems,” Physical Review A, vol. 79, no. 3, Article ID 033821, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. N. Kurilkina, V. N. Belyi, and N. S. Kazak, “Features of evanescent Bessel light beams formed in structures containing a dielectric layer,” Optics Communications, vol. 283, no. 20, pp. 3860–3868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” Journal of Optics, vol. 13, no. 5, Article ID 053001, pp. 1–32, 2011. View at Publisher · View at Google Scholar
  18. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of non-paraxial light in free space,” Physical Review A, vol. 82, Article ID 063825, 2010. View at Google Scholar
  19. H. Luo, S. Wen, W. Shu, and D. Fan, “Role of transverse-momentum currents in the optical Magnus effect in free space,” Physical Review A, vol. 81, no. 5, Article ID 053826, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” Journal of Nanophotonics, vol. 2, no. 1, Article ID 021875, pp. 1–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, NY, USA, 1999.
  22. R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukrainian Journal of Physical Optics, vol. 9, no. 3, pp. 182–186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Optics Express, vol. 19, no. 2, pp. 660–672, 2011. View at Publisher · View at Google Scholar
  24. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York, NY, USA, 1983.
  25. H. C. Van de Hulst, Light Scattering by Small Particles, Chapman & Hall, New York, NY, USA, 1957.
  26. L. Allen, M. J. Padgett, and M. Babiker, “Orbital Angular Momentum of Light,” Progress in Optics, vol. 39, pp. 291–372, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Jesacher, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Reverse orbiting of microparticles in optical vortices,” Optics Letters, vol. 31, no. 19, pp. 2824–2826, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Novitsky and Q. Cheng-Wei, “Can a single gradientless light beam drag particles?” Physics.Optics. In press, http://arxiv.org/abs/1102.5285.
  29. J. Chen, J. Ng, L. Zhifang, and C. T. Chan, “Optical pulling force,” Nature Photonics, vol. 5, no. 5, pp. 531–534, 2011. View at Publisher · View at Google Scholar
  30. V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Physical Review B, vol. 73, no. 7, Article ID 075416, pp. 1–6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Physical Review Letters, vol. 102, no. 11, Article ID 113602, 2009. View at Publisher · View at Google Scholar
  32. C. Schwartz and A. Dogariu, “Conservation of angular momentum of light in single scattering,” Optics Express, vol. 14, no. 18, pp. 8425–8433, 2006. View at Publisher · View at Google Scholar · View at Scopus