Table of Contents
Advances in Optical Technologies
Volume 2012, Article ID 278194, 8 pages
http://dx.doi.org/10.1155/2012/278194
Research Article

Nanoscale Biomolecular Detection Limit for Gold Nanoparticles Based on Near-Infrared Response

1Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via Fosso del Cavaliere 100, 00133 Roma, Italy
2Istituto di Scienze e Tecnologia dell’Informazione, Consiglio Nazionale delle Ricerche, Via Moruzzi 1, 56124 Pisa, Italy

Received 27 July 2012; Accepted 31 October 2012

Academic Editor: Carlo Corsi

Copyright © 2012 Mario D’Acunto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Ramsey and A. van der Berg, Micro Total Analysis Systems, Kluwer Academic Publisher, Boston, Mass, USA, 2001.
  2. D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, “Micro total analysis systems. 1. Introduction, theory, and technology,” Analytical Chemistry, vol. 74, no. 12, pp. 2623–2636, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications,” Analytical Chemistry, vol. 74, no. 12, pp. 2637–2652, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Kong, N. R. Franklin, C. Zhou et al., “Nanotube molecular wires as chemical sensors,” Science, vol. 287, no. 5453, pp. 622–625, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, no. 5533, pp. 1289–1292, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Letters, vol. 5, no. 4, pp. 803–807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. E. S. Jeng, A. E. Moll, A. C. Roy, J. B. Gastala, and M. S. Strano, “Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes,” Nano Letters, vol. 6, no. 3, pp. 371–375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. P. R. Nair and M. A. Alam, “Screening-limited response of NanoBiosensors,” Nano Letters, vol. 8, no. 5, pp. 1281–1285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Soleymani, Z. Fang, E. H. Sargent, and S. O. Kelley, “Programming the detection limits of biosensors through controlled nanostructuring,” Nature Nanotechnology, vol. 4, no. 12, pp. 844–848, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. M. E. Azzazy, M. M. H. Mansour, and S. C. Kazmierczak, “Nanodiagnostics: a new frontier for clinical laboratory medicine,” Clinical Chemistry, vol. 52, no. 7, pp. 1238–1246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nature Biotechnology, vol. 17, no. 4, pp. 375–378, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, no. 5385, pp. 2016–2018, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science, vol. 298, no. 5602, pp. 2361–2366, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Y. Wu, H. J. Liu, J. Q. Liu et al., “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nature Biotechnology, vol. 21, no. 4, pp. 41–43, 2003. View at Google Scholar · View at Scopus
  15. C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors, vol. 8, no. 5, pp. 3082–3105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. H. M. E. Azzazy, M. M. H. Mansour, and S. C. Kazmierczak, “From diagnostics to therapy: prospects of quantum dots,” Clinical Biochemistry, vol. 40, no. 13-14, pp. 917–927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Michalet, F. F. Pinaud, L. A. Bentolila et al., “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science, vol. 307, no. 5709, pp. 538–544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Xing and J. Rao, “Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging,” Cancer Biomarkers, vol. 4, no. 6, pp. 307–319, 2008. View at Google Scholar · View at Scopus
  19. Z. Jin and N. Hildebrandt, “Semiconductor quantum dots for in vitro diagnostics and cellular imaging,” Trends in Biotechnology, vol. 30, no. 7, pp. 394–403, 2012. View at Publisher · View at Google Scholar
  20. J. Fritz, M. K. Baller, H. P. Lang et al., “Translating biomolecular recognition into nanomechanics,” Science, vol. 288, no. 5464, pp. 316–318, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. R. McKendry, J. Zhang, Y. Arntz et al., “Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 9783–9788, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Mertens, C. Rogero, M. Calleja et al., “Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films,” Nature Nanotechnology, vol. 3, no. 5, pp. 301–307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Datar, S. Kim, S. Jeon et al., “Cantilever sensors: nanomechanical tools for diagnostics,” MRS Bulletin, vol. 34, no. 6, pp. 449–454, 2009. View at Google Scholar · View at Scopus
  24. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature, vol. 382, no. 6592, pp. 607–609, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. C. C. You, O. R. Miranda, B. Gider et al., “Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors,” Nature Nanotechnology, vol. 2, no. 5, pp. 318–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Baptista, E. Pereira, P. Eaton et al., “Gold nanoparticles for the development of clinical diagnosis methods,” Analytical and Bioanalytical Chemistry, vol. 391, no. 3, pp. 943–950, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. A. A. Ho, H. C. Chang, N. Y. Shih et al., “Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor,” Analytical Chemistry, vol. 82, no. 14, pp. 5944–5950, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Kumar, B. M. Boruah, and X. J. Liang, “Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS,” Journal of Nanomaterials, vol. 2011, Article ID 202187, 17 pages, 2011. View at Publisher · View at Google Scholar
  29. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” Journal of Physical Chemistry B, vol. 110, no. 14, pp. 7238–7248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Wang, M. O’Toole, A. Massey et al., “Highly specific, MIR fluorescent contrast agent with emission controlled by gold nanoparticle,” Advances in Experimental Medicine and Biology, vol. 701, no. 4, pp. 149–154, 2011. View at Publisher · View at Google Scholar
  31. T. Chung, S. Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors, vol. 11, no. 11, pp. 10907–10929, 2011. View at Publisher · View at Google Scholar
  32. S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology, vol. 20, no. 43, Article ID 434015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos et al., “Modelling the optical response of gold nanoparticles,” Chemical Society Reviews, vol. 37, no. 9, pp. 1792–1805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. D. Jackson, Classical Electrodynamics, Wiley, New York, NY, USA, 1999.
  35. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Annalen der Physik, vol. 330, no. 3, pp. 377–445, 1908. View at Google Scholar
  36. H. De Voe, “Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction,” The Journal of Chemical Physics, vol. 41, no. 2, pp. 393–400, 1964. View at Google Scholar · View at Scopus
  37. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” Journal of the Optical Society of America A, vol. 11, no. 4, pp. 1491–1499, 1994. View at Google Scholar · View at Scopus
  38. http://code.google.com/p/ddscat/.
  39. http://arxiv.org/pdf/1202.3424v3.pdf.
  40. Y. W. Jung, J. J. Yoon, Y. D. Kim, and D. Woo, “Study of the interaction between biomolecule monolayers using total internal reflection ellipsometry,” Journal of the Korean Physical Society, vol. 58, no. 42, pp. 1031–1034, 2011. View at Publisher · View at Google Scholar · View at Scopus