Table of Contents
Advances in Optical Technologies
Volume 2012 (2012), Article ID 767836, 7 pages
http://dx.doi.org/10.1155/2012/767836
Research Article

From Fabrication to Characterization of 3D Organic Microresonators: A Complementary Alliance of Microfluidics and Optics

1Institut de Physique de Rennes (IPR), Université de Rennes 1, UMR CNRS 6251, France
2Institut Universitaire de France (IUF), Paris, France

Received 25 July 2012; Accepted 2 October 2012

Academic Editor: Andreas E. Vasdekis

Copyright © 2012 David Pluchon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Tamir, Guided-Wave Optoelectronics, Springer, 1988.
  2. R. G. Hunsperger, Integrated Optics: Theory and Technology, Springer, 4th edition, 1995.
  3. P. Labbe, A. Donval, R. Hierle, E. Toussaere, and J. Zyss, “Electro-optic polymer based devices and technology for optical telecommunication,” Comptes Rendus Physique, vol. 3, no. 4, pp. 543–554, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Michelotti, A. Belardini, M. C. Larciprete et al., “Measurement of the electro-optic properties of poled polymers at 1.55 micron by means of sandwich structures with zinc oxide transparent electrode,” Applied Physics Letters, vol. 83, no. 22, pp. 4477–4479, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Bêche, N. Pelletier, E. Gaviot et al., “Conception of optical integrated circuits on polymers,” Microelectronics Journal, vol. 37, no. 5, pp. 421–427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Pelletier, B. Bêche, L. Camberlein et al., “Single-mode rib optical waveguides on SOG/SU-8 polymer and integrated Mach-Zehnder for designing thermal sensors,” IEEE Sensors Journal, vol. 6, no. 3, pp. 565–570, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Ballarini, F. Frascella, N. De Leo et al., “A polymer-based functional pattern on onedimensional photonic crystals for photon sorting of fluorescence radiation,” Optic Express, vol. 20, no. 6, pp. 6703–6711, 2012. View at Google Scholar
  8. A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics, CRC Press, 2009.
  9. K. J. Vahala, “Optical microcavities,” Nature, vol. 424, no. 6950, pp. 839–846, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods, vol. 5, no. 7, pp. 591–596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Scheuer and A. Yariv, “Fabrication and characterization of low-loss polymeric waveguides and micro-resonators,” Journal of the European Optical Society, vol. 1, pp. 06007-1–0060075, 2006. View at Google Scholar
  12. M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Applied Physics Letters, vol. 88, no. 3, Article ID 031108, pp. 1–3, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Delezoide, M. Salsac, J. Lautru et al., “Vertically coupled polymer microracetrack resonators for label-free biochemical sensors,” Photonics Technolgy Letters, vol. 24, pp. 270–272, 2012. View at Google Scholar
  14. A. Zebda, L. Camberlein, B. Bêche et al., “Spin coating and plasma process for 2.5D integrated photonics on multilayer polymers,” Thin Solid Films, vol. 516, no. 23, pp. 8668–8674, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Pluchon, N. Huby, H. Lhermite, D. Duval, and B. Bêche, “Investigation of fabrication and resonant optical coupling in various 2D micro-resonator structures in a UV210 polymer,” Journal of Micromechanics and Microengineering, vol. 22, no. 8, pp. 085016–085024, 2012. View at Google Scholar
  16. J. A. Stratton, “Electromagnetic theory,” in IEEE Press Series on Electromagnetic Wave Theory, D. G. Dudley, Ed., pp. 392–420, Wiley, Hoboken, NJ, USA, 2007. View at Google Scholar
  17. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, NY, USA, 1972.
  18. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” Journal of the Optical Society of America A, vol. 10, no. 2, pp. 343–352, 1993. View at Google Scholar · View at Scopus
  19. A. M. Zysk, P. S. Carney, and J. C. Schotland, “Eikonal method for calculation of coherence functions,” Physical Review Letters, vol. 95, no. 4, Article ID 043904, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhysics Letters, vol. 23, no. 5, pp. 327–334, 1993. View at Google Scholar
  21. D. Pluchon, B. Bêche, N. Huby, and E. Gaviot, “Theoretical investigations on optical caustics of spherical microresonators: ananlytical expressions of caustics and their asymptotic behaviors, computational simulations,” Optics Communications, vol. 285, pp. 2247–2254, 2012. View at Google Scholar
  22. S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using “flow focusing” in microchannels,” Applied Physics Letters, vol. 82, no. 3, pp. 364–366, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Huby, D. Pluchon, N. Coulon et al., “Design of organic 3D microresonators with microfluidics coupled to thin-film processes for photonic applications,” Optics Communications, vol. 283, no. 11, pp. 2451–2456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Pluchon, N. Huby, A. Moréac, P. Panizza, and B. Bêche, “Flexible beam-waist technique for whispering gallery modes excitation in polymeric 3D micro-resonators,” Optik. In press. View at Publisher · View at Google Scholar
  25. D. L. Shealy and J. A. Hoffnagle, “Wavefront and caustics of a plane wave refracted by an arbitrary surface,” Journal of the Optical Society of America A, vol. 25, no. 9, pp. 2370–2382, 2008. View at Publisher · View at Google Scholar · View at Scopus