Table of Contents
Advances in Optical Technologies
Volume 2012, Article ID 792571, 7 pages
Research Article

Photonic Heterodyne Pixel for Imaging Arrays at Microwave and MM-Wave Frequencies

1Electronics Technology Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain
2Grupo de Radiofrecuencia (GRF), Universidad Carlos III de Madrid, 28911 Leganés, Spain

Received 27 June 2012; Accepted 13 September 2012

Academic Editor: Borja Vidal

Copyright © 2012 Á. R. Criado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The use of photonic heterodyne receivers based on semiconductor optical amplifiers to be used in imaging arrays at several GHz frequencies is evaluated. With this objective, a imaging array based on such photonic pixels has been fabricated and characterized. Each of the receiving optoelectronic pixels is composed of an antipodal linear tapered slot antenna (LTSA) that sends the received RF signal directly to the electrical port of a semiconductor opticalamplifier (SOA) acting as the optoelectronic mixer. Both the local oscillator (LO) and the intermediate frequency (IF) signals are directly distributed to/from the array pixels using fiber optics, that allows for remote LO generation and IF processing to recover the image. The results shown in this work demonstrate that the performances of the optoelectronic imaging array are similar to a reference all-electronic array, revealing the possibility of using this photonic architecture in future high-density, scalable, compact imaging arrays in microwave and millimeter wave ranges.