Table of Contents
Advances in Optical Technologies
Volume 2012, Article ID 792571, 7 pages
http://dx.doi.org/10.1155/2012/792571
Research Article

Photonic Heterodyne Pixel for Imaging Arrays at Microwave and MM-Wave Frequencies

1Electronics Technology Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain
2Grupo de Radiofrecuencia (GRF), Universidad Carlos III de Madrid, 28911 Leganés, Spain

Received 27 June 2012; Accepted 13 September 2012

Academic Editor: Borja Vidal

Copyright © 2012 Á. R. Criado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Marti and J. Capmany, “Microwave photonics and radio-over-fiber research,” Microwave Magazine, IEEE, vol. 10, pp. 96–105, 2009. View at Google Scholar
  2. P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, and M. Alouini, “Time delay generation at high frequency using SOA based slow and fast light,” Optics Express, vol. 19, pp. 21180–21188, 2011. View at Google Scholar
  3. L. Jofre, C. Stoltidou, S. Blanch et al., “Optically beamformed wideband array performance,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 6, pp. 1594–1604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Kuri, H. Toda, and K. I. Kitayama, “Dense wavelength-division multiplexing millimeter-wave-band radio-on-fiber signal transmission with photonic downconversion,” Journal of Lightwave Technology, vol. 21, no. 6, pp. 1510–1517, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Hraimel, X. Zhang, and K. Wu, “Photonic down-conversion of millimeter wave multiband orthogonal frequency division multiplexing ultra-wideband using four wave mixing in an electro-absorption modulator,” Journal of Lightwave Technology, vol. 28, no. 13, Article ID 5473097, pp. 1987–1993, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Acedo, H. Lamela, and C. Roda, “Optoelectronic up-conversion using compact laterally mode-locked diode lasers,” IEEE Photonics Technology Letters, vol. 18, no. 17, pp. 1888–1890, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Palací, G. Villanueva, and J. Herrera, “EAM-SOA millimeter-wave frequency up-converter for radio-over-fiber applications,” Optics Communications, vol. 284, no. 1, pp. 98–102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Bohémond, A. Sharaiha, T. Rampone, and H. Khaleghi, “Electro-optical radiofrequency mixer based on semiconductor optical amplifier,” Electronics Letters, vol. 47, no. 5, pp. 331–333, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. H. Seo, C. S. Choi, Y. S. Kang, Y. D. Chung, J. Kim, and W. Y. Choi, “SOA-EAM frequency up/down-converters for 60-GHz Bi-directional radio-on-fiber systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 2, pp. 959–966, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Bohémond, P. Morel, A. Sharaiha, T. Rampone, and B. Pucel, “Experimental and simulation analysis of the third-order input interception point in an all-optical rf mixer based on a semiconductor optical amplifier,” Journal of Lightwave Technology, vol. 29, no. 1, Article ID 5638116, pp. 91–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation,” IEEE Instrumentation and Measurement Magazine, vol. 10, no. 2, pp. 26–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Henriksson, N. Joachimowicz, C. Conessa, and J. C. Bolomey, “Quantitative microwave imaging for breast cancer detection using a planar 2.45 GHz system,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 10, pp. 2691–2699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 9, pp. 1581–1592, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. T. Ghasr, M. A. Abou-Khousa, S. Kharkovsky, R. Zoughi, and D. Pommerenke, “Portable real-time microwave camera at 24 GHz,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 2, pp. 1114–1125, 2012. View at Google Scholar
  15. Á. R. Criado, C. de Dios, and P. Acedo, “Characterization of Ultra Non Linear SOA in a heterodyne detector configuration with remote Photonic Local Oscillator distribution,” IEEE Photonics Technology Letters, vol. 24, no. 13, pp. 1136–1138, 2012. View at Google Scholar
  16. X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” Optoelectronics, IET, vol. 5, pp. 202–206, 2011. View at Google Scholar
  17. S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, and L. Johansson, “An optical phase-locked loop photonic integrated circuit,” Journal of Lightwave Technology, vol. 28, no. 4, pp. 1–1, 2009. View at Google Scholar
  18. K. S. Yngvesson, T. L. Korzeniowski, Y. S. Kim, E. L. Kollberg, and J. F. Johansson, “Tapered slot antenna—a new integrated element for millimeter—wave applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 37, no. 2, pp. 365–374, 1989. View at Publisher · View at Google Scholar · View at Scopus
  19. C. De Dios and H. Lamela, “Improvements to long-duration low-power gain-switching diode laser pulses using a highly nonline optical loop mirror: theory and experiment,” Journal of Lightwave Technology, vol. 29, no. 5, Article ID 5678610, pp. 700–707, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. B. Rizk and G. M. Rebeiz, “Millimeter-wave Fermi tapered slot antennas on micromachined silicon substrates,” IEEE Transactions on Antennas and Propagation, vol. 50, no. 3, pp. 379–383, 2002. View at Publisher · View at Google Scholar · View at Scopus