Table of Contents
Advances in Optical Technologies
Volume 2012, Article ID 925065, 18 pages
http://dx.doi.org/10.1155/2012/925065
Review Article

Photonic Technologies for Millimeter- and Submillimeter-Wave Signals

1Nanophotonics Technology Center, Polytechnic University of Valencia, 46022 Valencia, Spain
2Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka 565-0871, Japan
3Broadband and Wireless Communications Group, University of Kent, Canterbury CT2 7NT, UK
4Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada V8W 3P6

Received 24 July 2012; Accepted 9 September 2012

Academic Editor: Kiyoshi Shimamura

Copyright © 2012 B. Vidal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. Agrawal, Fiber Optic Communication Systems, John Wiley & Sons, New York, NY, USA, 2010.
  2. A. J. Seeds, “Microwave photonics,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 877–887, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photonics, vol. 1, no. 6, pp. 319–330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. C. Williamson and R. D. Esman, “RF photonics,” Journal of Lightwave Technology, vol. 26, no. 9, pp. 1145–1153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Yao, “Microwave photonics,” Journal of Lightwave Technology, vol. 27, no. 3, pp. 314–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Berceli and P. R. Herczfeld, “Microwave photonics—a historical perspective,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 11, pp. 2992–3000, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. P. H. Siegel, “Terahertz technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 910–928, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, vol. 1, no. 2, pp. 97–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Materials, vol. 1, no. 1, pp. 26–33, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Nagatsuma, “Generating millimeter and terahertz waves,” IEEE Microwave Magazine, vol. 10, no. 4, pp. 64–74, 2009. View at Google Scholar
  11. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser and Photonics Reviews, vol. 5, no. 1, pp. 124–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. L. Dexheimer, Terahertz Spectroscopy, CRC Press, New York, NY, USA, 2008.
  13. K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Applied Physics Letters, vol. 90, no. 17, Article ID 171121, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J. P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Applied Physics B, vol. 101, no. 1-2, pp. 11–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. E. R. Brown, “Advancements in photomixing and photoconductive switching for THz spectroscopy and imaging,” in 4th Terahertz Technology and Applications, vol. 7938 of Proceedings of SPIE, San Francisco, Calif, USA, January 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Roehle, R. J. B. Dietz, H. J. Hensel et al., “Next generation 1.5 μm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Optics Express, vol. 18, no. 3, pp. 2296–2301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Kato, “Ultrawide-B and/high-frequency photodetectors,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 7, pp. 1265–1281, 1999. View at Google Scholar · View at Scopus
  18. N. Shimizu and T. Nagatsuma, “Photodiode-integrated microstrip antenna array for subterahertz radiation,” IEEE Photonics Technology Letters, vol. 18, no. 6, pp. 743–745, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 7, pp. 363–365, 2012. View at Google Scholar
  20. T. Nagatsuma, A. Kaino, S. Hisatake et al., “Continuous-wave terahertz spectroscopy system based on photodiodes,” PIERS Online, vol. 6, no. 4, pp. 390–394, 2010. View at Google Scholar
  21. E. Rouvalis, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Millimeter-wave optoelectronic mixers based on uni-traveling carrier photodiodes,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 686–691, 2012. View at Google Scholar
  22. M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 6, pp. 910–916, 1991. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grisckowsky, “Terahertz wavegudes,” Journal of the Optical Society of America B, vol. 17, no. 5, pp. 851–863, 2000. View at Google Scholar
  24. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” Journal of Applied Physics, vol. 88, no. 7, pp. 4449–4451, 2000. View at Google Scholar · View at Scopus
  25. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Optics Letters, vol. 31, no. 3, pp. 308–310, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Applied Physics Letters, vol. 76, no. 15, pp. 1987–1989, 2000. View at Google Scholar · View at Scopus
  27. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature, vol. 432, no. 7015, pp. 376–379, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. T. I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Applied Physics Letters, vol. 86, no. 16, Article ID 161904, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Optics Express, vol. 14, no. 1, pp. 279–290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Mendis and D. M. Mittleman, “Multifaceted terahertz applications of parallel-plate waveguide: TE1 mode,” Electronics Letters, vol. 46, pp. 40–44, 2010. View at Google Scholar
  31. M. K. Mbonye, V. Astley, W. L. Chan, J. A. Deibel, and D. M. Mittleman, “A terahertz dual wire waveguide,” in Proceedings of the Lasers and Electro-Optics Conference, Optical Society of America, p. CThLL1, Baltimore, Mary, USA, 2007.
  32. H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Optics Express, vol. 18, no. 7, pp. 7415–7420, 2010. View at Google Scholar · View at Scopus
  33. H. Pahlevaninezhad and T. E. Darcie, “Coupling of terahertz waves to a two-wire waveguide,” Optics Express, vol. 18, no. 22, pp. 22614–22624, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Applied Physics Letters, vol. 95, no. 23, Article ID 233506, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Roman, O. Ichim, L. Sarger, V. Vigneras, and P. Mounaix, “Terahertz dielectric characterisation of polymethacrylimide rigid foam: the perfect sheer plate?” Electronics Letters, vol. 40, no. 19, pp. 1167–1169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Fattinger and D. Grischkowsky, “Observation of electromagnetic shock waves from propagating surface-dipole distributions,” Physical Review Letters, vol. 62, no. 25, pp. 2961–2964, 1989. View at Publisher · View at Google Scholar · View at Scopus
  37. P. H. Siegel, R. P. Smith, M. C. Gaidis, and S. C. Martin, “2.5-THz GaAs monolithic membrane-diode mixer,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 5, pp. 596–604, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Efficient terahertz slot-line waveguides,” Optics Express, vol. 19, no. 26, pp. B47–B55, 2011. View at Google Scholar
  39. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” Journal of Optical Society of America B, vol. 7, no. 10, pp. 2006–2015, 1990. View at Publisher · View at Google Scholar
  40. H. Pahlevaninezhad, Design and implementation of efficient terahertz waveguides [Ph.D. thesis], 2012.
  41. C. Loyez, C. Lethien, R. Kassi et al., “Subcarrier radio signal transmission over multimode fibre for 60 GHz WLAN using a phase noise cancellation technique,” Electronics Letters, vol. 41, no. 2, pp. 91–92, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Nkansah, A. Das, N. J. Gomes, and P. Shen, “Multilevel modulated signal transmission over serial single-mode and multimode fiber links using vertical-cavity surface-emitting lasers for millimeter-wave wireless communications,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 6, pp. 1219–1227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. M. G. Larrodé and A. M. J. Koonen, “Theoretical and experimental demonstration of OFM robustness against modal dispersion impairments in radio over multimode fiber links,” Journal of Lightwave Technology, vol. 26, no. 12, pp. 1722–1728, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1716–1724, 1996. View at Google Scholar · View at Scopus
  45. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, New York, NY, USA.
  46. J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electronics Letters, vol. 28, no. 25, pp. 2309–2311, 1992. View at Google Scholar · View at Scopus
  47. G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 10, pp. 3090–3097, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard, and B. N. Ellison, “High-purity millimeter-wave photonic local oscillator generation and delivery,” in Proceedings of the International Microwave Photonics Topical Meeting (WP'03), pp. 189–192, Budapest, Hungary.
  49. G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator,” Journal of Lightwave Technology, vol. 23, no. 9, pp. 2687–2695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Vidal, P. G. Huggard, B. N. Ellison, and N. J. Gomes, “Optoelectronic generation of W-band millimetre-wave signals using Brillouin amplification,” Electronics Letters, vol. 46, no. 21, pp. 1449–1450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, “Microwave signal generation with injection locked laser diodes,” Electronics Letters, vol. 19, no. 13, pp. 491–493, 1983. View at Google Scholar · View at Scopus
  52. R. T. Ramos and A. J. Seeds, “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” Electronics Letters, vol. 26, no. 6, pp. 389–391, 1990. View at Google Scholar · View at Scopus
  53. A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide line width semiconductor lasers by combined use of optical injection locking and optical phase-lock loop,” Journal of Lightwave Technology, vol. 17, no. 2, pp. 328–342, 1999. View at Google Scholar · View at Scopus
  54. D. Wake, C. R. Liana, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 9, pp. 2270–2276, 1995. View at Publisher · View at Google Scholar · View at Scopus
  55. F. van Dijk, A. Accard. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” in Proceedings of the International Topical Meeting on Microwave Photonics (MWP'11), pp. 73–76, Singapore, October 2011.
  56. P. G. Huggard, B. N. Ellison, P. Shen et al., “Generation of millimetre and sub-millimetre waves by photomixing in 1.55 μm wavelength photodiode,” Electronics Letters, vol. 38, no. 7, pp. 327–328, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. C. H. Cox III, G. E. Betts, and L. M. Johnson, “Analytic and experimental comparison of direct and external modulation in analog fiber-optic links,” IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 5, pp. 501–509, 1990. View at Publisher · View at Google Scholar · View at Scopus
  58. M. L. Farwell, W. S. C. Chang, and D. R. Huber, “Increased linear dynamic range by low biasing the Mach-Zehnder modulator,” IEEE Photonics Technology Letters, vol. 5, no. 7, pp. 779–782, 1993. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Armstrong, “OFDM for optical communications,” Journal of Lightwave Technology, vol. 27, pp. 189–204, 2009. View at Google Scholar
  60. H. Arslan and H. A. Mahmoud, “Error vector magnitude to SNR conversion for nondata-aided receivers,” IEEE Transactions on Wireless Communications, vol. 8, no. 5, pp. 2694–2704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Nkansah, A. Das, N. J. Gomes, P. Shen, and D. Wake, “VCSEL-based single-mode and multimode fiber star/tree distribution network for millimeter-wave wireless systems,” in Proceedings of the International Topical Meeting on Microwave Photonics (MWP'06), pp. 1–4, Grenoble, France, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Lim, A. Nirmalathas, D. Novak, and R. B. Waterhouse, “Capacity analysis and optimum channel allocations for a WDM ring fibre-radio backbone incorporating wavelength interleaving with a sectorized antenna interface,” in Proceedings of the International Topitcal Meeting on Microwave Photonics (MWP'02), pp. 371–374, November 2002. View at Publisher · View at Google Scholar
  63. X. Zhang, B. Liu, J. Yao, and R. Kashyap, “A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 2, pp. 929–936, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. W. P. Lin, “A robust fiber-radio architecture for wavelength-division-multiplexing ring-access networks,” Journal of Lightwave Technology, vol. 23, no. 9, pp. 2610–2620, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” Journal of Lightwave Technology, vol. 25, no. 11, pp. 3452–3471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Sambaraju, J. Herrera, J. Marti et al., “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic techniques,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (MWP'10), pp. 1–4, Montreal, Canada, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Weiss, A. Stohr, F. Lecoche, and B. Charbonnier, “27 Gbit/s photonic wireless 60 GHz transmission system using 16-QAM OFDM,” in Proceedings of the International Topical Meeting on Microwave Photonics (MWP'09), Valencia, Spain, October 2009.
  68. J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and noise effects in multi-level signal millimeter-wave over fiber transmission using single and dual wavelength modulation,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 11, pp. 3189–3198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” Journal of Applied Physics, vol. 107, no. 11, Article ID 111101, 22 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 32, no. 2, pp. 143–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Science and Technology, vol. 1, no. 1, pp. 256–264, 2011. View at Google Scholar
  72. T. Nagatsuma, H. J. Song, Y. Fujimoto et al., “Giga-bit wireless link using 300–400 GHz bands,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (MWP'09), Valencia, Spain, October 2009. View at Scopus
  73. H. J. Song, K. Ajito, A. Wakatsuki et al., “Terahertz wireless communication link at 300  GHz,” in PRoceedings of the IEEE International Topical Meeting on Microwave Photonics (MWP'10), pp. 42–45, Montreal, Canada, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Wakatsuki, T. Furuta, Y. Muramoto, T. Yoshimatsu, and H. Ito, “High-power and broadband sub-terahertz wave generation using a J-band photomixer module with rectangular-waveguide output port,” in Proceedings of the 33rd International Conference on Infrared and Millimeter Waves and the 16th International Conference on Terahertz Electronics, 2008, IRMMW-THz 2008, pp. 1–2, Pasadena, Calif, USA, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. A. J. Seeds, M. J. Fice, F. Pozzi et al., “Photonic-enabled microwave and terahertz communication systems,” in Proceedings of the Optical Fiber Communication (OFC'09), pp. 1–3, March 2009, OTuE6.
  76. M. J. Fice, E. Rouvalis, L. Ponnampalam, C. C. Renaud, and A. J. Seeds, “Telecommunications technology-based terahertz sources,” Electronics Letters, vol. 46, no. 26, pp. s28–s31, 2010. View at Google Scholar
  77. K. D. M. Möller and W. G. Rothschild, Far-Infrared Spectroscopy, John Wiley & Sons, NewYork, NY, USA, 1971.
  78. B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semiconductor Science and Technology, vol. 20, no. 7, pp. S246–S253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy,” Journal of Physical Chemistry, vol. 100, no. 24, pp. 10373–10379, 1996. View at Google Scholar · View at Scopus
  80. B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Physics in Medicine and Biology, vol. 47, no. 21, pp. 3807–3814, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 293–300, 2011. View at Google Scholar
  82. P. F. Taday, I. V. Bradley, D. D. Arnone, and M. Pepper, “Using Terahertz pulse spectroscopy to study the crystalline structure of a drug: a case study of the polymorphs of ranitidine hydrochloride,” Journal of Pharmaceutical Sciences, vol. 92, no. 4, pp. 831–838, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. R. M. Woodward, B. E. Cole, V. P. Wallace et al., “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Physics in Medicine and Biology, vol. 47, no. 21, pp. 3853–3863, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Materials Today, vol. 11, no. 3, pp. 18–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. D. Zimdars, J. S. White, G. Stuk, A. Chernovsky, G. Fichter, and S. Williamson, “Large area terahertz imaging and non-destructive evaluation applications,” Insight, vol. 48, no. 9, pp. 537–539, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. H. Hoshina, Y. Sasaki, A. Hayashi, C. Otani, and K. Kawase, “Noninvasive mail inspection system with terahertz radiation,” Applied Spectroscopy, vol. 63, no. 1, pp. 81–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. M. C. Kemp, “Explosives detection by terahertz spectroscopy—a bridge too far,” IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 282–292, 2011. View at Google Scholar
  88. S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polymer Testing, vol. 26, no. 5, pp. 614–618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Jansen, S. Wietzke, O. Peters et al., “Terahertz imaging: applications and perspectives,” Applied Optics, vol. 49, no. 19, pp. E48–E57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Jördens, S. Wietzke, M. Scheller, and M. Koch, “Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy,” Polymer Testing, vol. 29, no. 2, pp. 209–215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” International Journal of Infrared and Millimeter Waves, vol. 27, no. 4, pp. 547–556, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. J. B. Jackson, J. Bowen, G. Walker et al., “A survey of terahertz applications in cultural heritage conservation science,” IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 220–231, 2011. View at Google Scholar
  93. D. Banerjee, W. von Spiegel, M. D. Thomson, S. Schabel, and H. G. Roskos, “Diagnosing water content in paper by terahertz radiation,” Optics Express, vol. 16, no. 12, pp. 9060–9066, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. F. Hindle, A. Cuisset, R. Bocquet, and G. Mouret, “Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification,” Comptes Rendus Physique, vol. 9, no. 2, pp. 262–275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Optical Engineering, vol. 47, no. 3, Article ID 037003, 2008. View at Publisher · View at Google Scholar
  96. Y. Hua and H. Zhang, “Qualitative and quantitative detection of pesticides with terahertz time-domain spectroscopy,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 7, pp. 2064–2070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. R. Blundell and C. Y. E. Tong, “Submillimeter receivers for radio astronomy,” Proceedings of the IEEE, vol. 80, no. 11, pp. 1702–1720, 1992. View at Google Scholar
  98. C. Kulesa, “Terahertz spectroscopy for astronomy: from comets to cosmology,” IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 232–240, 2011. View at Google Scholar
  99. M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Optics Letters, vol. 14, no. 20, pp. 1128–1130, 1989. View at Google Scholar
  100. Y. S. Lee, Principles of Terahertz Science and Technology, Springer, NewYork, NY, USA, 2009.
  101. D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Applied Physics Letters, vol. 26, no. 3, pp. 101–103, 1975. View at Publisher · View at Google Scholar · View at Scopus
  102. N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Applied Physics Letters, vol. 58, no. 3, pp. 222–224, 1991. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Ashida, “Ultra-broadband terahertz wave detection using photoconductive antenna,” Japanese Journal of Applied Physics, vol. 47, no. 10, pp. 8221–8225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. C. Baker, I. S. Gregory, W. R. Tribe et al., “Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes,” Applied Physics Letters, vol. 85, no. 21, pp. 4965–4967, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Sigmund, C. Sydlo, H. L. Hartnagel et al., “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Applied Physics Letters, vol. 87, no. 25, Article ID 252103, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Applied Physics Letters, vol. 86, no. 16, Article ID 163504, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. B. Sartorius, H. Roehle, H. Künzel et al., “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Optics Express, vol. 16, no. 13, pp. 9565–9570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. Palací and B. Vidal, “Distributed THz transmitter/receiver based on a 1. 5 μm Fiber Link,” in Proceedings of the 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Houston, Tex, USA, October 2011.
  109. J. R. Demers, R. T. Logan Jr., and E. R. Brown, “An optically integrated coherent frequency-domain THz spectrometer with signal-to-noise ratio up to 80 dB,” in Proceedings of the International Topical Meeting on Microwave Photonics (MWP'07), pp. 92–95, Victoria, Canada, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Scheller, K. Baaske, and M. Koch, “Multifrequency continuous wave terahertz spectroscopy for absolute thickness determination,” Applied Physics Letters, vol. 96, no. 15, Article ID 151112, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. H. J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, and T. Nagatsuma, “Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications,” Journal of Lightwave Technology, vol. 26, no. 15, pp. 2521–2530, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Roggenbuck, H. Schmitz, A. Deninger et al., “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics, vol. 12, Article ID 043017, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 32, no. 2, pp. 225–232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. T. Göbel, D. Schoenherr, C. Sydlo, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Single-sampling-point coherent detection in continuous-wave photomixing terahertz systems,” Electronics Letters, vol. 45, no. 1, pp. 65–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Hisatake, G. Kitahara, N. Kukutsu, Y. Fukada, N. Yoshimoto, and T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne systembased on photonic techniques,” in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (MWP), 2012.
  116. http://www.rainbowphotonics.com/prod_teratune.php.
  117. http://www.teraview.com/products/terahertz-continuous-wave-cw400/index.html.
  118. http://www.toptica.com/products/terahertz_generation/lasers_and_photomixers_for_cw_terahertz_generation.html.
  119. http://emcorephotonicsystems.com/products/terahertz-thz-frequency-domain-spectrometer-ftir/.
  120. http://www.hhi.fraunhofer.de/en/departments/photonic-components/terahertz-generation-detection/.