Table of Contents
Advances in Optical Technologies
Volume 2013, Article ID 168923, 8 pages
http://dx.doi.org/10.1155/2013/168923
Research Article

Splice Loss of Graded-Index Fibers: Accurate Semianalytical Descriptions Using Nelder-Mead Nonlinear Unconstrained Optimization with Three-Parameter Fundamental Modal Field

1Applied Electronics and Instrumentation Department, Sikkim Manipal Institute of Technology, Majitar, Sikkim 737136, India
2Physics Department, Sikkim Manipal Institute of Technology, Majitar, Sikkim 737136, India
3Computer Science Department, Sikkim Manipal Institute of Technology, Majitar, Sikkim 737136, India

Received 5 March 2013; Accepted 4 June 2013

Academic Editor: Yong Zhao

Copyright © 2013 Raja Roy Choudhury et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Tewari, S. I. Hosain, and K. Thyagarajan, “Scalar variational analysis of single mode fibers with Gaussian and smoothed-out profiles,” Optics Communications, vol. 48, no. 3, pp. 176–180, 1983. View at Google Scholar · View at Scopus
  2. A. Sharma, S. I. Hosain, and A. K. Ghatak, “The fundamental mode of graded-index fibres: simple and accurate variational methods,” Optical and Quantum Electronics, vol. 14, no. 1, pp. 7–15, 1982. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Sharma and A. K. Ghatak, “A variational analysis of single mode graded-index fibers,” Optics Communications, vol. 36, no. 1, pp. 22–24, 1981. View at Google Scholar · View at Scopus
  4. A. Ankiewicz and G.-D. Peng, “Generalized Gaussian approximation for single-mode fibers,” Journal of Lightwave Technology, vol. 10, no. 1, pp. 22–27, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Chieh, W.-H. Tsai, and M.-S. Wu, “Extended Gaussian approximation for single-mode graded-index fibers,” Journal of Lightwave Technology, vol. 12, no. 3, pp. 392–395, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. G. De Angelis, G. Panariello, and A. Scaglione, “Variational method to approximate the field of weakly guiding optical fibers by Laguerre-Gauss/Bessel expansion,” Journal of Lightwave Technology, vol. 17, no. 12, pp. 2665–2674, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Chiadini, G. Panariello, and A. Scaglione, “Variational analysis of matched-clad optical fibers,” Journal of Lightwave Technology, vol. 21, no. 1, pp. 96–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Cao and S. Chi, “Approximate analytical description for fundamental-mode fields of graded-index fibers: beyond the Gaussian approximation,” Journal of Lightwave Technology, vol. 19, no. 1, pp. 54–59, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. A. K. Ghatak, R. Srivastava, I. F. Faria, K. Thyagarajan, and R. Tiwari, “Accurate method for characterising single-mode fibres: theory and experiment,” Electronics Letters, vol. 19, no. 3, pp. 97–99, 1983. View at Google Scholar · View at Scopus
  10. J. P. Meunier and S. I. Hosain, “An efficient model for splice loss evaluation in single-mode graded-index fibers,” Journal of Lightwave Technology, vol. 9, no. 11, pp. 1457–1463, 1991. View at Publisher · View at Google Scholar · View at Scopus
  11. S. I. Hosain, A. Sharma, and A. K. Ghatak, “Splice-loss evaluation for single-mode graded-index fibers,” Applied Optics, vol. 21, no. 15, pp. 2716–2720, 1982. View at Google Scholar · View at Scopus
  12. U. C. Paek, “Dispersionless single-mode fibers with trapezoidal-index profiles in the wavelength region near 1.5 μm,” Applied Optics, vol. 22, no. 15, pp. 2363–2369, 1983. View at Google Scholar · View at Scopus
  13. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis, John Willy and Sons, New York, NY, USA, 2001.
  14. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM Journal on Optimization, vol. 9, no. 1, pp. 112–147, 1998. View at Google Scholar · View at Scopus
  15. J. M. Parkinson and D. Hutchinson, “An investigation into the efficiency of variants on the simplex method,” in Numerical Methods for Nonlinear Optimization, F. A. Lootsma, Ed., pp. 115–135, Academic Press, New York, NY, USA, 1972. View at Google Scholar
  16. M. H. Wright, “Direct search methods: once scorned, now respectable,” in Proceedings of the Dundee Biennial Conference in Numerical Analysis, D. F. Griffiths and G. A. Watson, Eds., pp. 191–208, Addison Wesley; Longman, Harlow, UK, 1996.
  17. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Computer Journal, vol. 7, pp. 308–313, 1965. View at Google Scholar
  18. T. H. Rowan, Functional stability analysis of numerical algorithms [Ph.D. thesis], University of Texas, Austin, Tex, USA, 1990.
  19. S. Singer and S. Singer, “Complexity analysis of Nelder-Mead search iterations,” in Proceedings of the 1st Conference on Applied Mathematics and Computation, Dubrovnik, Croatia, 1999, M. Rogina, V. Hari, N. Limić, and Z. Tutek, Eds., pp. 185–196, PMF-Matematički odjel, Zagreb, 2001.
  20. S. Singer and S. Singer, “Efficient implementation of the Nelder-Mead search algorithm,” Applied Numerical Analysis and Computational Mathematics, vol. 1, no. 3, pp. 524–534, 2004. View at Google Scholar
  21. R. Roychoudhury and A. Roychoudhury, “Accurate semi analytical model of an optical fiber having Kerr nonlinearity using a robust nonlinear unconstrained optimization method,” Optics Communications, vol. 284, no. 4, pp. 1038–1044, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, NY, USA, 1980.
  23. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, NY, USA, 1981.