Table of Contents Author Guidelines Submit a Manuscript
Advances in Optical Technologies
Volume 2016 (2016), Article ID 5757361, 12 pages
http://dx.doi.org/10.1155/2016/5757361
Research Article

Quartz Enhanced Photoacoustic Spectroscopy for Detection of Improvised Explosive Devices and Precursors

Consorzio CREO (Centro Ricerche Elettro Ottiche), SS.17 Località Boschetto, 67100 L’Aquila, Italy

Received 2 September 2015; Revised 23 December 2015; Accepted 28 December 2015

Academic Editor: Partha P. Banerjee

Copyright © 2016 Roberto Viola et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Communication from the Commission to the European Parliament and the Council on Enhancing the Security of Explosives, http://ec.europa.eu/transparency/regdoc/rep/1/2007/EN/1-2007-651-EN-F1-1.Pdf.
  2. R. L. Woodfin, Trace Chemical Sensing of Explosives, John Wiley & Sons, New York, NY, USA, 2007.
  3. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Optics Letters, vol. 27, no. 21, pp. 1902–1904, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. D. Wojcik, M. C. Phillips, B. D. Cannon, and M. S. Taubman, “Gas-phase photoacoustic sensor at 8.41 μm using quartz tuning forks and amplitude-modulated quantum cascade lasers,” Applied Physics B, vol. 85, no. 2-3, pp. 307–313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Jahjah, S. Moumdji, O. Gauthier-Lafaye, S. Bonnefont, Y. Rouillard, and A. Vicet, “Antimonide-based 2.3 μm photonic crystal coupled-cavity lasers for CH4,” Electronics Letters, vol. 48, no. 5, pp. 277–278, 2012. View at Publisher · View at Google Scholar
  6. M. Jahjah, S. Belahsene, L. Nähle et al., “Quartz enhanced photoacoustic spectroscopy with a 3.38 μm antimonide distributed feedback laser,” Optics Letters, vol. 37, no. 13, pp. 2502–2504, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Optics Letters, vol. 34, no. 10, pp. 1594–1596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Kosterev, L. Dong, D. Thomazy, F. K. Tittel, and S. Overby, “QEPAS for chemical analysis of multi-component gas mixtures,” Applied Physics B: Lasers and Optics, vol. 101, no. 3, pp. 649–659, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Applied Physics B, vol. 100, no. 1, pp. 125–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Optics Letters, vol. 37, no. 21, pp. 4461–4463, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Optics Express, vol. 21, no. 1, pp. 1008–1019, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm,” Optics Express, vol. 15, no. 12, pp. 7357–7366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. C. Phillips, T. L. Myers, M. D. Wojcik, and B. D. Cannon, “External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features,” Optics Letters, vol. 32, no. 9, pp. 1177–1179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Bauer, U. Willer, R. Lewicki et al., “A mid-infrared QEPAS sensor device for TATP detection,” Journal of Physics: Conference Series, vol. 157, no. 1, Article ID 012002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. A. Kosterev, P. R. Buerki, L. Dong, M. Reed, T. Day, and F. K. Tittel, “QEPAS detector for rapid spectral measurements,” Applied Physics B, vol. 100, no. 1, pp. 173–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Review of Scientific Instruments, vol. 76, Article ID 043105, 2005. View at Publisher · View at Google Scholar
  17. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science, vol. 264, no. 5158, pp. 553–556, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Capasso, “High-performance midinfrared quantum cascade lasers,” Optical Engineering, vol. 49, no. 11, Article ID 111102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Applied Physics B, vol. 100, no. 3, pp. 627–635, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors, vol. 14, no. 4, pp. 6165–6206, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. A. A. Kosterev, T. S. Mosely, and F. K. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Applied Physics B, vol. 85, no. 2-3, pp. 295–300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Veres, Z. Bozóki, Á. Mohácsi, M. Szakáll, and G. Szabó, “External cavity diode laser based photoacoustic detection of CO2 at 1.43 μm: the effect of molecular relaxation,” Applied Spectroscopy, vol. 57, no. 8, pp. 900–905, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. Pacific Northwest National Lab (PNNL) database of IR absorption spectra, https://secure2.pnl.gov/nsd/nsd.nsf/Welcome.