Table of Contents Author Guidelines Submit a Manuscript
Research Letters in Physical Chemistry
Volume 2008, Article ID 210616, 4 pages
http://dx.doi.org/10.1155/2008/210616
Research Letter

Pigment Melanin Scavenges Nitric Oxide In Vitro: Possible Relevance to Keloid Formation

1Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA
2Department of Internal Medicine, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA
3Department of Pharmacology and Toxicology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA
4Clinical Research Center, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA

Received 9 May 2008; Accepted 2 August 2008

Academic Editor: Werner Nau

Copyright © 2008 Julian M. Menter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Chedekel, “Photophysics and photochemistry of melanin,” in Melanin: Its Role in Human Photoprotection, pp. 11–22, Valdenmar, Overland Park, Kan, USA, 1994. View at Google Scholar
  2. X. Zhang, C. Erb, J. Flammer, and W. M. Nau, “Absolute rate constants for the quenching of reactive excited states by melanin and related 5,6-dihydroxyindole metabolites: implications for their antioxidant activity,” Photochemistry and Photobiology, vol. 71, no. 5, pp. 524–533, 2000. View at Publisher · View at Google Scholar
  3. Y. Yamaguchi, M. Brenner, and V. J. Hearing, “The regulation of skin pigmentation,” The Journal of Biological Chemistry, vol. 282, no. 38, pp. 27557–27561, 2007. View at Publisher · View at Google Scholar · View at PubMed
  4. J. M. Menter and I. Willis, “Electron transfer and photoprotective properties of melanins in solution,” Pigment Cell Research, vol. 10, no. 4, pp. 214–217, 1997. View at Publisher · View at Google Scholar
  5. P. R. Crippa, “Oxygen adsorption and photoreduction on fractal melanin particles,” Colloids and Surfaces B, vol. 20, no. 4, pp. 315–319, 2001. View at Publisher · View at Google Scholar
  6. P. R. Crippa, V. Cristofoletti, and N. Romeo, “A band model for melanin deduced from optical absorption and photoconductivity experiments,” Biochimica et Biophysica Acta, vol. 538, no. 1, pp. 164–170, 1978. View at Google Scholar
  7. I. E. Roseborough, M. A. Grevious, and R. C. Lee, “Prevention and treatment of excessive dermal scarring,” Journal of the National Medical Association, vol. 96, no. 1, pp. 108–116, 2004. View at Google Scholar
  8. P. D. Butler, M. T. Longaker, and G. P. Yang, “Current progress in keloid research and treatment,” Journal of the American College of Surgeons, vol. 206, no. 4, pp. 731–741, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. L. Louw, “The keloid phenomenon: progress toward a solution,” Clinical Anatomy, vol. 20, no. 1, pp. 3–14, 2007. View at Publisher · View at Google Scholar · View at PubMed
  10. C. A. Cobold and J. A. Sherratt, “Mathematical modelling of nitric oxide activity in wound healing can explain keloid and hypertrophic scarring,” Journal of Theoretical Biology, vol. 204, no. 2, pp. 257–288, 2000. View at Publisher · View at Google Scholar · View at PubMed
  11. Y.-C. Hsu, M. Hsiao, L.-F. Wang, Y. W. Chien, and W.-R. Lee, “Nitric oxide produced by iNOS is associated with collagen synthesis in keloid scar formation,” Nitric Oxide, vol. 14, no. 4, pp. 327–334, 2006. View at Publisher · View at Google Scholar · View at PubMed
  12. M. G. Espey, K. M. Miranda, D. D. Thomas, and D. A. Wink, “Distinction between nitrosating mechanisms within human cells and aqueous solution,” Journal of Biological Chemistry, vol. 276, no. 32, pp. 30085–30091, 2001. View at Publisher · View at Google Scholar · View at PubMed
  13. L. Zeise, “Analytical methods for characterization and identification of eumelanins,” in Melanin: Its Role in Human Photoprotection, pp. 65–79, Valdenmar, Overland Park, Kan, USA, 1994. View at Google Scholar
  14. H. Kojima, N. Nakatsubo, K. Kikuchi et al., “Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins,” Analytical Chemistry, vol. 70, no. 13, pp. 2446–2453, 1998. View at Publisher · View at Google Scholar
  15. C. A. Parker, “Apparatus and experimental methods,” in Photoluminescence of Solutions with Applications to Photochemistry and Analytical Chemistry, pp. 128–302, Elsevier, Amsterdam, The Netherlands, 1968. View at Google Scholar
  16. L. Novellino, M. D'Ischia, and G. Prota, “Nitric oxide-induced oxidation of 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid under aerobic conditions: non-enzymatic route to melanin pigments of potential relevance to skin (photo)protection,” Biochimica et Biophysica Acta, vol. 1425, no. 1, pp. 27–35, 1998. View at Publisher · View at Google Scholar
  17. W. Korytowski, P. Hintz, R. C. Sealy, and B. Kalyanaraman, “Mechanism of dismutation of superoxide produced during autoxidation of melanin pigments,” Biochemical and Biophysical Research Communications, vol. 131, no. 2, pp. 659–665, 1985. View at Publisher · View at Google Scholar
  18. R. Farias-Eisner, G. Chaudhuri, E. Aeberhard, and J. M. Fukuto, “The chemistry and tumoricidal activity of nitric oxide/hydrogen peroxide and the implications to cell resistance/susceptibility,” Journal of Biological Chemistry, vol. 271, no. 11, pp. 6144–6151, 1996. View at Publisher · View at Google Scholar