Table of Contents
Advances in Power Electronics
Volume 2012, Article ID 837602, 10 pages
Research Article

Energy Space Modeling of Power Electronics in Local Area Power Networks

Department of Electrical and Computer Engineering, Michigan Technological University, 121 EERC Building, 1400 Townsend Dr, Houghton, MI 49931-1295, USA

Received 17 May 2012; Revised 26 July 2012; Accepted 29 July 2012

Academic Editor: Henry S. H. Chung

Copyright © 2012 Gregory M. Vosters and Wayne W. Weaver. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Power electronics are a core enabling technology for local area power networks and microgrids for renewable energy, telecom, data centers, and many other applications. Unfortunately, the modeling, simulation, and control of power electronics in these systems are complicated when using traditional converter models in conjunction with the network nodal equations. This work proposes a change of variables for the power electronic converter models from traditional voltage and currents to input conductance and stored energy. From this change of state, a universal point of load converter model can be utilized in the network nodal equations irrespective of the topology of the converter. The only impact the original converter topology has on the new model is the bounds on the control and state variables, and the mapping back to the switching or duty cycle controls. The proposed approach greatly simplifies the modeling of local area power networks and microgrids. This simpler model can be used to study stability and energy utilization and develop high-level control strategies that were not previously feasible.