Table of Contents
Advances in Power Electronics
Volume 2013, Article ID 352765, 9 pages
http://dx.doi.org/10.1155/2013/352765
Review Article

Modeling, Control, and Simulation of a Solar Hydrogen/Fuel Cell Hybrid Energy System for Grid-Connected Applications

Power Electronic Group (PEG), ENIS, BP W, 3038 Sfax, Tunisia

Received 10 January 2013; Revised 18 February 2013; Accepted 18 February 2013

Academic Editor: Jose Pomilio

Copyright © 2013 Tourkia Lajnef et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K.-S. Ro and S. Rahman, “Two-loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant,” IEEE Transactions on Energy Conversion, vol. 13, no. 3, pp. 276–281, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Sukamongkol, S. Chungpaibulpatana, and W. Ongsakul, “A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads,” Renewable Energy, vol. 27, no. 2, pp. 237–258, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. J. J. Hwang, D. Y. Wang, N. C. Shih, D. Y. Lai, and C. K. Chen, “Development of fuel-cell-powered electric bicycle,” Journal of Power Sources, vol. 133, no. 2, pp. 223–228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Hwang, W. R. Chang, F. B. Weng, A. Su, and C. K. Chen, “Development of a small vehicular PEM fuel cell system,” International Journal of Hydrogen Energy, vol. 33, no. 14, pp. 3801–3807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Y. El-Sharkh, A. Rahman, M. S. Alam, P. C. Byrne, A. A. Sakla, and T. Thomas, “A dynamic model for a stand-alone PEM fuel cell power plant for residential applications,” Journal of Power Sources, vol. 138, no. 1-2, pp. 199–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Padullés, G. W. Ault, and J. R. McDonald, “Integrated SOFC plant dynamic model for power systems simulation,” Journal of Power Sources, vol. 86, no. 1, pp. 495–500, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Hamelin, K. Agbossou, A. Laperrière, F. Laurencelle, and T. K. Bose, “Dynamic behavior of a PEM fuel cell stack for stationary applications,” International Journal of Hydrogen Energy, vol. 26, no. 6, pp. 625–629, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Khan and M. T. Iqbal, “Dynamic modeling and simulation of a small wind-fuel cell hybrid energy system,” Renewable Energy, vol. 30, no. 3, pp. 421–439, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Ulleberg, Stand-alone power systems for the future: optimal design, operation and control of solar-hydrogen energy systems [Ph.D. thesis], Norwegian University of Science and Technology, 1998.
  10. K. Sapru, N. T. Stetson, S. R. Ovshinsky et al., “Development of a small scale hydrogen production-storage system for hydrogen applications,” in Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference, pp. 1947–1952, August 1997. View at Scopus
  11. H. Görgün, “Dynamic modelling of a proton exchange membrane (PEM) electrolyzer,” International Journal of Hydrogen Energy, vol. 31, no. 1, pp. 29–38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. J. N. Spruijt, D. M. O'Sullivan, and J. B. Klaassens, “PWM-switch modeling of DC-DC converters,” IEEE Transactions on Power Electronics, vol. 10, no. 6, pp. 659–664, 1995. View at Publisher · View at Google Scholar
  13. J. Chen, R. W. Erickson, and D. Maksimovic', “Averaged switch modeling of boundary conduction mode DC-to-DC converters,” in Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society (IECON '01), vol. 2, pp. 844–849, Denver, Colo, USA, November 2001. View at Publisher · View at Google Scholar
  14. A. Ammous, K. Ammous, M. Ayedi, Y. Ounajjar, and F. Sellami, “An advanced PWM-switch model including semiconductor device nonlinearities,” IEEE Transactions on Power Electronics, vol. 18, no. 5, pp. 1230–1237, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Abis, K. Ammous, H. Morel, and A. Ammous, “Advanced averaged model of PWM-switch operating in CCM and DCM conduction modes,” International Review of Electrical Engineering, vol. 2, no. 4, pp. 544–556, 2007. View at Google Scholar