Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 1, Issue 1, Pages 9-18
http://dx.doi.org/10.1155/2002/307480
Research Article

The ultrastructure of Ignicoccus: Evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon

1Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
2Aventis Behring GmbH, Emil-von-Behring-Strasse 76, D-35041 Marburg, Germany

Received 9 July 2001; Accepted 13 August 2001

Copyright © 2002 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Barbier, A. Godfroy, and A. Godfroy, “Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise,” Int. J. Syst. Bacteriol., vol. 49, pp. 1829–1837, 1999. View at Google Scholar
  2. H.R. Costantino, S.H. Brown, and R.M. Kelly, “Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C,” J. Bacteriol., vol. 172, pp. 3654–3660, 1990. View at Google Scholar
  3. W.M. de Vos, S.W.M. Kengen, W.G. Voorhorst, and J. Van der Oost, “Sugar utilization and its control in hyperthermophiles,” Extremophiles, vol. 2, pp. 201–205, 1998. View at Google Scholar
  4. J. Diez, K. Diederichs, G. Greller, R. Horlacher, W. Boos, and W. Welte, “The crystal structure of a liganded trehalose/maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis at 1.85 Å,” J. Mol. Biol., vol. 305, pp. 905–915, 2001. View at Google Scholar
  5. J. DiRuggiero, D. Dunn, and D. Dunn, “Evidence of recent lateral gene transfer among hyperthermophilic archaea,” Mol. Microbiol., vol. 38, pp. 684–693, 2000. View at Google Scholar
  6. G. Dong, C. Vieille, and J.G. Zeikus, “Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme,” Appl. Environ. Microbiol., vol. 63, pp. 3577–3584, 1997. View at Google Scholar
  7. M. Ehrmann, R. Ehrle, E. Hofmann, W. Boos, and A. Schlosser, “The ABC maltose transporter,” Mol. Microbiol., vol. 29, pp. 685–694, 1998. View at Google Scholar
  8. M.G. Elferink, S.V. Albers, W.N. Konings, and A.J. Driessen, “Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters,” Mol. Microbiol., vol. 39, pp. 1494–1503, 2001. View at Google Scholar
  9. G. Erauso, A.-L. Reysenbach, and A.-L. Reysenbach, “Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent,” Arch. Microbiol., vol. 160, pp. 338–349, 1993. View at Google Scholar
  10. A.G. Evdokimov, D.E. Anderson, K.M. Routzahn, and D.S. Waugh, “Structural basis for oligosaccharide recognition by Pyrococcus furiosus maltodextrin-binding protein,” J. Mol. Biol., vol. 305, pp. 891–904, 2001. View at Google Scholar
  11. G. Fiala and K.O. Stetter, “Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C,” Arch. Microbiol., vol. 145, pp. 56–61, 1986. View at Google Scholar
  12. G. Greller, R. Horlacher, J. Diruggiero, and W. Boos, “Molecular and biochemical analysis of MalK, the ATP-hydrolyzing subunit of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis,” J. Biol. Chem., vol. 274, pp. 20259–20264, 1999. View at Google Scholar
  13. D. Hanahan, “Studies on transformation of Escherichia coli with plasmids,” J. Mol. Biol., vol. 166, pp. 557–580, 1983. View at Google Scholar
  14. R. Horlacher, K.B. Xavier, H. Santos, J. Diruggiero, M. Kossmann, and W. Boos, “Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/ maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis,” J. Bacteriol., vol. 180, pp. 680–689, 1998. View at Google Scholar
  15. P. Jackson, “High-resolution polyacrylamide gel electrophoresis of fluorophore-labeled reducing saccharides,” Methods Enzymol., vol. 230, pp. 250–265, 1994. View at Google Scholar
  16. C.R. Jones, M. Ray, K.A. Dawson, and H.J. Strobel, “High-affinity maltose binding and transport by the thermophilic anaerobe Thermoanaerobacter ethanolicus 39E,” Appl. Environ. Microbiol., vol. 66, pp. 995–1000, 2000. View at Google Scholar
  17. S. Jorgensen, C.E. Vorgias, and G. Antranikian, “Cloning, sequencing, characterization, and expression of an extracellular alpha-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis,” J. Biol. Chem., vol. 272, pp. 16335–16342, 1997. View at Google Scholar
  18. S.W.M. Kengen, E.J. Luesink, A.J. Stams, and A.J. Zehnder, “Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus,” Eur. J. Biochem., vol. 213, pp. 305–312, 1993. View at Google Scholar
  19. S.W.M. Kengen, F.A. De Bok, N.D. Van Loo, C. Dijkema, A.J. Stams, and W.M. De Vos, “Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus,” J. Biol. Chem., vol. 269, pp. 17537–17541, 1994. View at Google Scholar
  20. K.A. Laderman, B.R. Davis, H.C. Krutzsch, M.S. Lewis, Y.V. Griko, P.L. Privalov, and C.B. Anfinsen, “The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus,” J. Biol. Chem., vol. 268, pp. 24394–24401, 1993. View at Google Scholar
  21. W.F. McGuckin and B.F. McKenzie, “An improved periodic acid fuchsin sulfite staining method for evaluation of glycoproteins,” Clin. Chem., vol. 4, pp. 476–483, 1958. View at Google Scholar
  22. A. Neuner, H.W. Jannasch, S. Belkin, and K.O. Stetter, “Thermococcus litoralis sp. nov.: A new species of extremely thermophilic marine archaebacteria,” Arch. Microbiol., vol. 153, pp. 205–207, 1990. View at Google Scholar
  23. G. Richarme and A. Kepes, “Study of binding protein-ligand interaction by ammonium sulfate-assisted adsorption on cellulose esters filters,” Biochim. Biophys. Acta, vol. 742, pp. 16–24, 1983. View at Google Scholar
  24. T. Schäfer, K.B. Xavier, H. Santos, and P. Schönheit, “Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: Proposal of a novel glycolytic pathway based on 13C labelling data and enzyme activities,” FEMS Microbiol. Lett., vol. 121, pp. 107–114, 1994. View at Google Scholar
  25. C. van der Does, E.H. Manting, A. Kaufmann, M. Lutz, and A.J.M. Driessen, “Interaction between SecA and SecYEG in micellar solution and formation of the membrane-inserted state,” Biochemistry, vol. 37, pp. 201–210, 1998. View at Google Scholar
  26. K.B. Xavier, R. Peist, M. Kossmann, W. Boos, and H. Santos, “Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes,” J. Bacteriol., vol. 181, pp. 3358–3367, 1999. View at Google Scholar