Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 1, Issue 2, Pages 75-86
http://dx.doi.org/10.1155/2002/436561
Review Article

Perspectives on biotechnological applications of archaea

Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Faculty of Medicine, II University of Naples, via Costantinopoli 16, 80138 Naples, Italy

Received 15 October 2001; Accepted 6 May 2002

Copyright © 2002 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.C. Arguelles, “Physiological roles of trehalose in bacteria and yeasts: a comparative analysis,” Arch. Microbiol., vol. 174, pp. 217–224, 2000. View at Google Scholar
  2. I.M. Banat, R.S. Makkar, and S.S. Cameotra, “Potential commercial applications of microbial surfactants,” Appl. Microbiol. Biotechnol., vol. 53, pp. 495–508, 2000. View at Google Scholar
  3. P.L. Bergquist, M.D. Gibbs, D.D. Morris, D.R. Thompson, A.M. Uhl, and R.M. Daniel, “Hyperthermophilic xylanases,” Methods Enzymol., vol. 330, pp. 301–319, 2001. View at Google Scholar
  4. C. Bertoldo and G. Antranikian, “Amylolytic enzymes from hyperthermophiles,” Methods Enzymol., vol. 330, pp. 269–289, 2001. View at Google Scholar
  5. D.R. Boone, W.B. Whitman, and P. Rouviere, “Diversity and taxonomy of methanogens,” in Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics, J.G. Ferry, Ed., pp. 35–80, Chapman and Hall, London, 1993. View at Google Scholar
  6. K. Bredberg, J. Persson, M. Christiansson, B. Stenberg, and O. Holst, “Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus—a new method for rubber recycling,” Appl. Microbiol. Biotechnol., vol. 55, pp. 43–48, 2001. View at Google Scholar
  7. S.G. Cady, M.W. Bauer, W. Callen, M.A. Snead, E.J. Mathur, J.M. Short, and R.M. Kelly, “Beta-endoglucanase from Pyrococcus furiosus,” Methods Enzymol., vol. 330, pp. 346–354, 2001. View at Google Scholar
  8. R. Cannio, D. De Pascale, M. Rossi, and S. Bartolucci, “Gene expression of a thermostable beta-galactosidase in mammalian cells and its application in assays of eukaryotic promoter activity,” Biotechnol. Appl. Biochem., vol. 19, pp. 233–244, 1994. View at Google Scholar
  9. R. Cannio, P. Contursi, M. Rossi, and S. Bartolucci, “An autonomously replicating transforming vector for Sulfolobus solfataricus,” J. Bacteriol., vol. 180, pp. 3237–3240, 1998. View at Google Scholar
  10. R. Cannio, P. Contursi, M. Rossi, and S. Bartolucci, “Thermoadaptation of a mesophilic hygromycin B phosphotransferase by directed evolution in hyperthermophilic archaea: selection of a stable genetic marker for DNA transfer into Sulfolobus solfataricus,” Extremophiles, vol. 5, pp. 153–159, 2001. View at Google Scholar
  11. C.G. Choquet, G.B. Patel, I. Ekiel, and G.D. Sprott, Formation of stable liposomes from lipid extracts of archaeobacteria, 1999. 11 23.
  12. M. Ciaramella, R. Cannio, M. Moracci, F.M. Pisani, and M. Rossi, “Molecular biology of extremophiles,” World J. Microbiol. Biotechnol., vol. 11, pp. 71–84, 1995. View at Google Scholar
  13. M.J. Coronado, C. Vargas, E. Mellado, G. Tegos, C. Drainas, J.J. Nieto, and A. Ventosa, “The alpha-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization,” Microbiology, vol. 146, pp. 861–868, 2000. View at Google Scholar
  14. D.A. Cowan, “Enzymes from thermophilic Archaeabacteria: current and future application in biotechnology,” in The Archaebacteria: Biochemistry and Biotechnology (Biochem, J. Danson, D.W. Hough, and G.G. Lunt, Eds., pp. 149–169, Soc. Symp. 58). Portland Press, London, 1992. View at Google Scholar
  15. M.V. Cubellis, C. Rozzo, P. Montecucchi, and M. Rossi, “Isolation and sequencing of a new β-galactosidase encoding archaebacterial gene,” Gene, vol. 94, pp. 89–94, 1990. View at Google Scholar
  16. M.S. da Costa, H. Santos, and E.A. Galinski, “An overview of the role and diversity of compatible solutes in Bacteria and Archaea,” Adv. Biochem. Eng. Biotechnol., vol. 61, pp. 117–153, 1998. View at Google Scholar
  17. D. de Pascale, M.P. Sasso, and M.P. Sasso, “Recombinant thermophilic enzymes for trehalose and trehalosyl dextrins production,” J. Mol. Catal. B Enzym., vol. 11, pp. 777–786, 2001. View at Google Scholar
  18. D. De Pascale, I Di Lernia, M.P. Sasso, A. Furia, M. De Rosa, and M. Rossi, “A novel thermophilic fusion enzyme for trehalose production,” Extremophiles, vol. 6, pp. 463–468, 2002. View at Google Scholar
  19. M. De Rosa, A. Morana, A. Riccio, A. Gambacorta, A. Trincone, and O. Incani, “Lipids of the Archaea: a new tool for bioelectronics,” Biosens. Bioelectron., vol. 9, pp. 669–675, 1994. View at Google Scholar
  20. W.M. De Vos, W.G. Voorhorst, M. Dijkgraaf, L.D. Kluskens, J. Van Der Oost, and R.J. Siezen, “Purification, characterization, and molecular modeling of pyrolysin and other extracellular thermostable serine proteases from hyperthermophilic microorganisms,” Methods Enzymol., vol. 330, pp. 383–393, 2001. View at Google Scholar
  21. I. Di Lernia, A. Morana, A. Ottobrino, S. Fusco, M. Rossi, and M. De Rosa, “Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch,” Extremophiles, vol. 2, pp. 409–416, 1998. View at Google Scholar
  22. I. Di Lernia, C. Schiraldi, M. Generoso, and M. De Rosa, “Trehalose production at high temperature exploiting an immobilized cell bioreactor,” Extremophiles, vol. 6, pp. 341–347, 2001. View at Publisher · View at Google Scholar · View at PubMed
  23. F. Duffner, C. Bertoldo, J.T. Andersen, K. Wagner, and G. Antranikian, “A new thermoactive pullulanase from Desulfurococcus mucosus: cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillussubtilis,” J. Bacteriol., vol. 182, pp. 6331–6338, 2000. View at Google Scholar
  24. S. D’Auria, F. Pellino, F. La Cara, R. Barone, M. Rossi, and R. Nucci, “Immobilization on chitosan of a thermophilic β-glycosidase expressed in Saccharomyces cerevisiae.,” Appl. Biochem. Biotechnol., vol. 61, pp. 157–166, 1996. View at Google Scholar
  25. S. Frillings, A. Linden, and A. Linden, “Cloning and expression of alpha-amylase from the hyperthermophilic archaeon Pyrococcus woesei in the moderately halophilic bacterium Halomonas elongata,” J. Appl. Microbiol., vol. 88, pp. 495–503, 2000. View at Google Scholar
  26. P. Fusi, M. Grisa, E. Mombelli, R. Consonni, P. Tortora, and M. Vanoni, “Expression of a synthetic gene encoding P2 ribonuclease from the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus in mesophylic hosts,” Gene, vol. 154, pp. 99–103, 1995. View at Google Scholar
  27. A. Gambacorta, A. Ghiozzi, and M. De Rosa, “Archaeal lipids and their biotechnological applications,” World J. Microbiol. Biotechnol., vol. 11, pp. 115–132, 1995. View at Google Scholar
  28. W.L. Gardner and W.B. Whitman, “Expression vectors for Methanococcus maripaludis. Overexpression of acetohydroxyacid synthase and β-galactosidase,” Genetics, vol. 152, pp. 1439–1447, 1999. View at Google Scholar
  29. A. Godfroy, N.D. Raven, and R.J. Sharp, “Physiology and continuous culture of the hyperthermophilic deep-sea vent archaeon Pyrococcus abyssi ST549,” FEMS Microbiol. Lett., vol. 186, pp. 127–132, 2000. View at Google Scholar
  30. D.E. Graham, R. Overbeek, G.J. Olsen, and C.R. Woese, “An archaeal genomic signature,” Proc. Natl. Acad. Sci. USA, vol. 97, pp. 3304–3308, 2000. View at Google Scholar
  31. L. Gritz and J. Davies, “Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae,” Gene, vol. 25, pp. 179–188, 1983. View at Google Scholar
  32. D.W. Grogan, “Evidence of β-galactosidase of Sulfolobus solfataricus is only one of several activities of a thermostable β-D-glycosidase,” Appl. Environ. Microbiol., vol. 57, pp. 1644–1649, 1991. View at Google Scholar
  33. N. Guo, I. Puhlev, D.R. Brown, J. Mansbridge, and F. Levine, “Trehalose expression confers desiccation tolerance on human cells,” Nat. Biotechnol., vol. 18, pp. 168–171, 2000. View at Google Scholar
  34. P.J. Haney, J.H. Badger, G.L. Buldak, C.I. Reich, C.R. Woese, and G.J. Olsen, “Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species,” Proc. Natl. Acad. Sci. USA, vol. 96, pp. 3578–3583, 1999. View at Google Scholar
  35. R.A. Herbert, “A perspective on the biotechnological potential of extremophiles,” TIBTECH, vol. 10, pp. 395–401, 1992. View at Google Scholar
  36. F.F. Hezayen, B.H. Rehm, R. Eberhardt, and A. Steinbüchel, “Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor,” Appl. Microbiol. Biotechnol., vol. 54, pp. 319–325, 2000. View at Google Scholar
  37. M.L. Holmes and M.L. Dyall-Smith, “A plasmid vector with a selectable marker for halophilic archaebacteria,” J. Bacteriol., vol. 172, pp. 756–761, 1990. View at Google Scholar
  38. M.L. Holmes, S.D. Nuttal, and M.L. Dyall-Smith, “Construction and use of halobacterial shuttle vectors and further studies on Haloferax DNA gyrase,” J. Bacteriol., vol. 173, pp. 3807–3813, 1991. View at Google Scholar
  39. K. Horikoshi, “Alkaliphiles: some applications of their products for biotechnology,” Microbiol. Mol. Biol. Rev., vol. 63, pp. 735–750, 1999. View at Google Scholar
  40. D.W. Hough and M.J. Danson, “Extremozymes,” Curr. Opin. Chem. Biol., vol. 3, pp. 39–46, 1999. View at Google Scholar
  41. S. Huddleston, C.A. Yallop, and B.M. Charalambous, “The identification and partial characterization of a novel inducible extracellular thermostable esterase from the archaeon Sulfolobus shibatae,” Biochem. Biophys. Res. Commun., vol. 216, pp. 495–500, 1995. View at Google Scholar
  42. T. Iida, T. Iwabuchi, A. Ideno, S. Suzuki, and T. Maruyama, “FK506-binding protein-type peptidyl-prolyl cis-trans isomerase from a halophilic archaeum, Halobacterium cutirubrum,” Gene, vol. 256, pp. 319–326, 2000. View at Google Scholar
  43. M. Ishida, M. Yoshida, and T. Oshima, “Highly efficient production of enzymes of an extreme thermophile, Thermus thermophilus: a practical method to overexpress GC- rich genes in Escherichia coli,” Extremophiles, vol. 1, pp. 157–162, 1997. View at Google Scholar
  44. S. Ito, “Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics and application to detergents,” Extremophiles, vol. 1, pp. 61–66, 1997. View at Google Scholar
  45. S. Jorgensen, C.E. Vorgias, and G. Antranikian, “Cloning, sequencing, characterization, and expression of an extracellular alpha-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis,” J. Biol. Chem., vol. 272, pp. 16335–16342, 1997. View at Google Scholar
  46. O. Kandler and W. Zillig, “Archaebacteria,” Gustav Fischer Verlag, Stuttgart, 1986. View at Google Scholar
  47. P.J. Keeling and W.F. Doolittle, “Archaea: narrowing the gap between prokaryotes and eukaryotes,” Proc. Natl. Acad. Sci. USA, vol. 92, pp. 5761–5764, 1995. View at Google Scholar
  48. P.J. Keeling, R.L. Charlebois, and W.F. Doolittle, “Archaebacterial genomes: eubacterial form and eukaryotic content,” Curr. Opin. Genet. Dev., vol. 4, pp. 816–822, 1994. View at Google Scholar
  49. R.M. Kelly and J.W. Deming, “Extremely thermophilic archaebacteria: biological and engineering considerations,” Biotechnol. Prog., vol. 4, pp. 47–61, 1988. View at Google Scholar
  50. T. Kobayashi, H. Hanai, R. Aono, K. Horikoshi, and T. Kudo, “Cloning, expression and nucleotide sequence of the α-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. Strain Ah-36,” J. Bacteriol., vol. 176, pp. 5131–5134, 1994. View at Google Scholar
  51. K. Kobayashi, M. Kato, Y. Miura, and A. Iwamatsu, “Gene cloning and expression of new trehalose- producing enzymes from the hyperthermophilic archaeon Sulfolobus solfataricus KM1,” Biosci. Biotechnol. Biochem., vol. 60, pp. 1882–1885, 1996. View at Google Scholar
  52. M. Krahe, G. Antyranikian, and H. Märkl, “Fermentation of extremophilic microorganisms,” FEMS Microbiol. Rev., vol. 18, pp. 271–285, 1996. View at Google Scholar
  53. P. Lamosa, A. Burke, and A. Burke, “Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus,” Appl. Environ. Microbiol., vol. 66, pp. 1974–1979, 2000. View at Google Scholar
  54. J.K. Lanyi, “Bacteriorhodopsin as a model for proton pumps,” Nature, vol. 75, pp. 461–463, 1995. View at Google Scholar
  55. E. Leveque, B. Haye, and A. Belarbi, “Cloning and expression of an alpha-amylase encoding gene from the hyperthermophilic archaebacterium Thermococcus hydrothermalis and biochemical characterization of the recombinant enzyme,” FEMS Microbiol. Lett., vol. 186, pp. 67–71, 2000. View at Google Scholar
  56. J.H. Lim, J. Choi, and J. Choi, “Molecular cloning and characterization of the thermostable DNA ligase from Aquifex pyrophilus, a hyperthermophilic bacterium,” Extremophiles, vol. 5, pp. 161–168, 2001. View at Google Scholar
  57. D. Limauro, R. Cannio, G. Fiorentino, M. Rossi, and S. Bartolucci, “Identification and molecular characterization of an endoglucanase gene, celS, from the extremely thermophilic archaeon Sulfolobus solfataricus,” Extremophiles, vol. 5, pp. 213–219, 2001. View at Google Scholar
  58. D.R. Lovley, “Bioremediation: Anaerobes to the rescue,” Science, vol. 239, pp. 1444–1446, 2001. View at Google Scholar
  59. M.T. Madigan and B.L. Marrs, “Extremophiles,” Sci. Am., vol. 276, pp. 82–87, 1997. View at Google Scholar
  60. G. Manco, E. Giosuè, P. Herman, G. Carrera, and M. Rossi, “Cloning, overexpression and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus,” Arch. Biochem. Biophys., vol. 373, pp. 182–192, 2000. View at Google Scholar
  61. R. Margesin and F. Schinner, “Potential of halotolerant and halophilic microorganisms for biotechnology,” Extremophiles, vol. 5, pp. 73–83, 2001. View at Google Scholar
  62. A. Martino, C. Schiraldi, S. Fusco et al., “Properties of the recombinant α-glucosidase from Sulfolobus solfataricus in relation to starch processing,” J. Mol. Cat. B. Enzym., vol. 11, pp. 787–794, 2001. View at Google Scholar
  63. J.A. Maupin-Furlow, H.L. Wilson, S.J. Kaczowka, and M.S. Ou, “Proteasomes in the Archaea: from structure to function,” Front. Biosci., vol. 5, pp. D837–865, 2000. View at Google Scholar
  64. Y. Miura, M. Kettoku, M. Kato, K. Kobayashi, and K. Kondo, “High level production of thermostable alpha-amylase from Sulfolobus solfataricus in high-cell density culture of the food yeast Candida utilis,” J. Mol. Microbiol. Biotechnol., vol. 1, pp. 129–134, 1999. View at Google Scholar
  65. L. Montitsche, H. Driller, and E. Galinski, Ectoine and ectoine derivatives as moisturizers in cosmetics, 2000. 5 9.
  66. M. Moracci, A. La Volpe, J.F. Pulitzer, M. Rossi, and M. Ciaramella, “Expression of the thermostable beta-galactosidase gene from the archaebacterium Sulfolobus solfataricus in Saccharomyces cerevisiae and characterization of a new inducible promoter for heterologous gene expression,” J. Bacteriol., vol. 174, pp. 873–882, 1992. View at Google Scholar
  67. M. Moracci, M. Ciaramella, R. Nucci, L.H. Pearl, I. Sanderson, A. Trincone, and M. Rossi, “Thermostable β-glycosidase from the extreme thermoacidophilic Archaeon Sulfolobus solfataricus,” Biocatalysis, vol. 11, pp. 89–103, 1994. View at Google Scholar
  68. M. Moracci, R. Nucci, F. Febbraio, C. Vaccaro, N. Vespa, F. La Cara, and M. Rossi, “Expression and extensive characterization of a β-glycosidase from the extreme thermoacidophilic Archaeon Sulfolobus solfataricus,” Enzyme Microb. Technol., vol. 17, pp. 992–997, 1995. View at Google Scholar
  69. F. Niehaus, C. Bertoldo, M. Kahler, and G. Antranikian, “Extremophiles as a source of novel enzymes for industrial application,” Appl. Microbiol. Biotechnol., vol. 51, pp. 711–729, 1999. View at Google Scholar
  70. E. Nordberg-Karlsson, O. Holst, and A. Tocaj, “Efficient production of truncated thermostable xylanases from Rhodothermus marinus in Escherichia coli fed-batch cultures,” J. Biosci. Bioeng., vol. 87, pp. 598–606, 1999. View at Google Scholar
  71. P.R. Norris, “Acidophilic bacteria and their activity in mineral sulfides oxidation,” in Microbial Mineral Recovery, H.L. Ehrlich and C.L. Brierely, Eds., pp. 3–27, McGaw-Hill, New York, 1990. View at Google Scholar
  72. P.R. Norris and J.P. Owen, “Mineral sulfide oxidation by enrichment cultures of novel thermoacidophilic bacteria,” FEMS Microbiol. Rev., vol. 11, pp. 51–56, 1993. View at Google Scholar
  73. P.R. Norris, N.P. Burton, and N.A.M. Foulis, “Acidophiles in bioreactor mineral processing,” Extremophiles, vol. 4, pp. 71–76, 2000. View at Google Scholar
  74. R. Nucci, M. Moracci, C. Vaccaro, N. Vespa, and M. Rossi, “Exo-glucosidase activity and substrate specificity of the β-glycosidase gene in the Archaeon Sulfolobus solfataricus,” J. Bacteriol., vol. 177, pp. 1614–1619, 1993. View at Google Scholar
  75. A. Oren, “The ecology of extremely halophilic Archaea,” FEMS Microbiol. Rev., vol. 13, pp. 415–440, 1994. View at Google Scholar
  76. P. Palm, C. Schleper, B. Grampp, S. Yeats, P. Mcwilliam, W.D. Reiter, and W. Zillig, “Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae,” Virology, vol. 185, pp. 242–250, 1991. View at Google Scholar
  77. C.B. Park and S.B. Lee, “Constant volume fed-batch operation for high density cultivation of hyperthermophilic aerobes,” Biotechnol. Tech., vol. 11, pp. 277–281, 1997. View at Google Scholar
  78. C.B. Park and S.B. Lee, “Cultivation of the hyperthermophilic Archaeon Sulfolobus solfataricus in low salt media,” Biotechnol. Bioproc. Eng., vol. 4, pp. 21–25, 1999. View at Google Scholar
  79. G.B. Patel and G.D. Sprott, “Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems,” Crit. Rev. Biotechnol., vol. 19, pp. 317–357, 1999. View at Google Scholar
  80. I. Petzelbauer, R. Zeleny, A. Reiter, K.D. Kulbe, and B. Nidetzky, “Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose. II. Oligosaccharide formation by two thermostable beta-glycosidases,” Biotechnol. Bioeng., vol. 69, pp. 140–149, 2000. View at Google Scholar
  81. J. Pouwels, M. Moracci, and M. Moracci, “Activity and stability of hyperthermophilic enzymes: a comparative study on two archaeal β-glycosidases,” Extremophiles, vol. 4, pp. 157–164, 2000. View at Google Scholar
  82. C. Purcarea, G. Herve, R. Cunin, and D.R. Evans, “Cloning, expression, and structure analysis of carbamate kinase-like carbamoyl phosphate synthetase from Pyrococcus abyssi,” Extremophiles, vol. 5, pp. 229–239, 2001. View at Google Scholar
  83. N. Raven and R.J. Sharp, “Development of defined and minimal media for the growth of the hyperthermophilic archaeon Pyrococcus furiosus Vc. 1.,” FEMS Microbiol. Lett., vol. 146, pp. 135–141, 1997. View at Google Scholar
  84. N. Raven, N. Ladwa, D. Cossar, and R. Sharp, “Continuous culture of the hyperthermophilic archaeon Pyrococcus furiosus,” Appl. Microbiol. Biotechnol., vol. 38, pp. 263–267, 1992. View at Google Scholar
  85. H.J. Rehm, G. Reed, A. Pühler, and P. Stadler, “Biotechnology: Environmental processes I,” pp. 458–468, Vol. 11a. 2nd Edn. Wiley, New York, 1999. View at Google Scholar
  86. K.D. Rinker, C.J. Han, and R.M. Kelly, “Continuous culture as a tool for investigating the growth physiology of heterothrophic hyperthermophiles and extreme thermoacidophiles,” J. Appl. Microbiol., vol. 85, pp. 118S–127S, 1999. View at Google Scholar
  87. I. Romano, V. Calandrelli, E. Pagnotta, and R. Di Maso, “Whey as medium for biomass production of Sulfolobus solfataricus,” Biotechnol. Tech., vol. 6, pp. 391–392, 1992. View at Google Scholar
  88. M. Rossi and M. De Rosa, “Extremophiles in biotechnology,” in European Congress of Biotechnology. View at Google Scholar
  89. O. Rothe and M.A. Thomm, “Simplified method for the cultivation of extreme anaerobic archaea based on the use of sodium sulfite as reducing agent,” Extremophiles, vol. 4, pp. 247–252, 2000. View at Google Scholar
  90. N.J. Russell, “Toward a molecular understanding of cold activity of enzymes from psychrophiles,” Extremophiles, vol. 4, pp. 83–90, 2000. View at Google Scholar
  91. A. Rüdiger, J.C. Ogbonna, and H. Märkl, “Effect of gassing, agitation, substrate supplementation and dialysis on the growth of an extremely thermophilic archaeon Pyrococcus woesei,” Appl. Microbiol. Biotechnol., vol. 37, pp. 501–504, 1992. View at Google Scholar
  92. M. Saito, T. Koyano, H. Miyamoto, K. Unibe, and M. Kato, ATP synthetizing device, 1992.
  93. H. Santos and M.S. da Costa, “Organic solutes from thermophiles and hyperthermophiles,” Methods Enzymol., vol. 334, pp. 302–315, 2001. View at Google Scholar
  94. T. Sauer and E.A. Galinski, “Bacterial milking: a novel bioprocess for production of compatible solutes,” Biotechnol. Bioeng., vol. 57, pp. 306–313, 1998. View at Google Scholar
  95. A. Savchenko, C. Vielle, and J.G. Zeikus, “Alpha-amylases and amylopullulanase from Pyrococcus furiosus,” Methods Enzymol., vol. 330, pp. 354–363, 2001. View at Google Scholar
  96. P.A. Scherer, G.R. Vollmer, T. Fakhouri, and S. Martensen, “Development of a methanogenic process to degrade exhaustively the organic fraction of municipal “grey waste” under thermophilic and hyperthermophilic conditions,” Water Sci. Technol., vol. 41, no. 3, pp. 83–91, 2000. View at Google Scholar
  97. N.A. Schill, J.S. Liu, and U.V. Stockar, “Thermodynamic analysis of growth of Methanobacterium thermoautotrophicum,” Biotechnol. Bioeng., vol. 64, pp. 74–81, 1999. View at Google Scholar
  98. C. Schiraldi, F. Marulli, I. Di Lernia, A. Martino, and M. De Rosa, “A microfiltration bioreactor to achieve high cell density in Sulfolobus solfataricus fermentation,” Extremophiles, vol. 3, pp. 199–204, 1999. View at Google Scholar
  99. C. Schiraldi, A. Martino, and A. Martino, “Effective production of a thermostable α-Glucosidase from Sulfolobus solfataricus in Escherichia coli exploiting a microfiltration bioreactor,” Biotech. Bioeng., vol. 70, pp. 670–676, 2000. View at Google Scholar
  100. C. Schiraldi, M. Acone, M. Giuliano, I. Di Lernia, C. Maresca, M. Cartenì, and M. De Rosa, “Innovative fermentation strategies for the production of extremophilic enzymes,” Extremophiles, vol. 5, pp. 193–198, 2001. View at Google Scholar
  101. K. Schumacher, E. Heine, and H. Hocker, “Extremozymes for improving wool properties,” J. Biotechnol., vol. 89, pp. 281–288, 2001. View at Google Scholar
  102. M. Simola, A. Hanninen, S. Stranius, and M. Makarow, “Trehalose is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum but not for maintenance of membrane traffic functions after severe heat stress,” Mol. Microbiol., vol. 37, pp. 42–53, 2000. View at Google Scholar
  103. A.M. Spormann and F. Widdel, “Metabolism of alkylbenzenes, alkenes, and other hydrocarbons in anaerobic bacteria.,” Biodegradation, vol. 11, pp. 85–105, 2000. View at Google Scholar
  104. K.M. Stedman, C. Schleper, E. Rumpf, and W. Zillig, “Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus: construction and testing of viral shuttle vectors,” Genetics, vol. 152, pp. 1397–1405, 1999. View at Google Scholar
  105. A. Sunna, M. Moracci, M. Rossi, and G. Antranikian, “Glycosyl hydrolases from hyperthermophiles,” Extremophiles, vol. 1, pp. 2–13, 1997. View at Google Scholar
  106. Y. Tachibana, A. Kuramura, and A. Kuramura, “Purification and characterization of an extremely thermostable cyclomaltodextrin glucanotransferase from a newly isolated hyperthermophilic archaeon, a Thermococcus sp,” Appl. Environ. Microbiol., vol. 65, pp. 1991–1997, 1999. View at Google Scholar
  107. J.H. Tsao, M.K. Kaneshiro, S. Yu, and D.S. Clark, “Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen,” Biotechnol. Bioeng., vol. 43, pp. 258–261, 1994. View at Google Scholar
  108. A.M. Uhl and R.M. Daniel, “The first description of an archaeal hemicellulase: the xylanase from Thermococcus zilligii AN1,” Extremophiles, vol. 3, pp. 263–267, 1999. View at Google Scholar
  109. L. Viikari, A. Kantelinen, J. Sundquist, and M. Linko, “Xylanases in bleaching: from an idea to the industry,” FEMS Microbiol. Rev., vol. 13, pp. 335–350, 1994. View at Google Scholar
  110. W.G. Voorhorst, R.I. Eggen, E.J. Luesink, and W.M. de Vos, “Characterization of the celB gene coding for beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and site-directed mutation in Escherichia coli,” J. Bacteriol., vol. 177, pp. 7105–7111, 1995. View at Google Scholar
  111. R.I. Wadsworth and M.F. White, “Identification and properties of the crenarchaeal single stranded DNA binding protein from Sulfolobus solfataricus,” Nucleic Acids Res., vol. 29, pp. 914–920, 2001. View at Google Scholar
  112. D.J. Walsh, M.D. Gibbs, and P.L. Bergquist, “Expression and secretion of a xylanase from the extreme thermophile, Thermotoga strain FjSS3B.1, in Kluyveromyces lactis,” Extremophiles, vol. 2, pp. 9–14, 1998. View at Google Scholar
  113. D.T. Welsh, “Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate,” FEMS Microbiol. Rev., vol. 24, pp. 263–290, 2000. View at Google Scholar
  114. C.R. Woese and G.E. Fox, “Phylogenetic structure of the prokaryotic domain: the primary kingdoms,” Proc. Natl. Acad. Sci. USA, vol. 74, pp. 5088–5090, 1977. View at Google Scholar