Archaea

Archaea / 2002 / Article

Research Article | Open Access

Volume 1 |Article ID 601719 | https://doi.org/10.1155/2002/601719

B. Franzetti, G. Schoehn, D. Garcia, R. W. H. Ruigrok, G. Zaccai, "Characterization of the proteasome from the extremely halophilic archaeon Haloarcula marismortui", Archaea, vol. 1, Article ID 601719, 9 pages, 2002. https://doi.org/10.1155/2002/601719

Characterization of the proteasome from the extremely halophilic archaeon Haloarcula marismortui

Received22 Aug 2001
Accepted22 Oct 2001

Abstract

A 20S proteasome, comprising two subunits α and β, was purified from the extreme halophilic archaeon Haloarcula marismortui, which grows only in saturated salt conditions. The three-dimensional reconstruction of the H. marismortui proteasome (Hm proteasome), obtained from negatively stained electron micrographs, is virtually identical to the structure of a thermophilic proteasome filtered to the same resolution. The stability of the Hm proteasome was found to be less salt-dependent than that of other halophilic enzymes previously described. The proteolytic activity of the Hm proteasome was investigated using the malate dehydrogenase from H. marismortui (HmMalDH) as a model substrate. The HmMalDH denatures when the salt concentration is decreased below 2 M. Under these conditions, the proteasome efficiently cleaves HmMalDH during its denaturation process, but the fully denatured HmMalDH is poorly degraded. These in vitro experiments show that, at low salt concentrations, the 20S proteasome from halophilic archaea eliminates a misfolded protein.

References

  1. C. Allison and G.T. Macfarlane, “Regulation of protease production in Clostridium sporogenes,” Appl. Environ. Microbiol., vol. 56, pp. 3485–3490, 1990. View at: Google Scholar
  2. F. Arsene, T. Tomoyasu, and B. Bukau, “The heat shock response of Escherichia coli,” Int. J. Food Microbiol., vol. 55, pp. 3–9, 2000. View at: Google Scholar
  3. R.D. Barber and J.G. Ferry, “Archaeal proteasomes,” Methods Enzymol., vol. 330, pp. 413–424, 2001. View at: Google Scholar
  4. M.W. Bauer, S.B. Halio, and R.M. Kelly, “Proteases and glycosyl hydrolases from hyperthermophilic microorganisms,” Adv. Protein Chem., vol. 48, pp. 271–310, 1996. View at: Google Scholar
  5. I.I. Blumentals, A.S. Robinson, and R.M. Kelly, “Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus,” Appl. Environ. Microbiol., vol. 56, pp. 1992–1998, 1990. View at: Google Scholar
  6. M. Bochtler, L. Ditzel, M. Groll, and R. Huber, “Crystal structure of heat shock locus V (HslV) from Escherichia coli,” Proc. Natl. Acad. Sci. USA, vol. 94, pp. 6070–6074, 1997. View at: Google Scholar
  7. M. Bochtler, L. Ditzel, M. Groll, C. Hartmann, and R. Huber, “The proteasome,” Annu. Rev. Biophys. Biomol. Struct., vol. 28, pp. 295–317, 1999. View at: Google Scholar
  8. T.D. Brock, K.M. Brock, R.T. Belly, and R.L. Weiss, “Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature,” Arch. Microbiol., vol. 84, pp. 54–68, 1972. View at: Google Scholar
  9. B. Bukau, “Regulation of the Escherichia coli heat-shock response,” Mol. Microbiol., vol. 9, pp. 671–680, 1993. View at: Google Scholar
  10. N. Burlini, P. Magnani, A. Villa, F. Macchi, P. Tortora, and A. Guerritore, “A heat-stable serine proteinase from the extreme thermophilic archaebacterium Sulfolobus solfataricus,” Biochim. Biophys. Acta, vol. 1122, pp. 283–292, 1992. View at: Google Scholar
  11. L.S. Chang, P.M. Hicks, and R.M. Kelly, “Protease I from Pyrococcus furiosus,” Methods Enzymol., vol. 330, pp. 403–413, 2001. View at: Google Scholar
  12. I.G. Choi, W.G. Bang, S.H. Kim, and Y.G. Yu, “Extremely thermostable serine-type protease from Aquifex pyrophilus. Molecular cloning, expression, and characterization.,” J. Biol. Chem., vol. 274, pp. 881–888, 1999. View at: Google Scholar
  13. H. Connaris, D. Cowan, and R. Sharp, “Heterogeneity of proteinases from the hyperthermophilic archeobacterium Pyrococcus furiosus,” J. Gen. Microbiol., vol. 137, pp. 1193–1199, 1991. View at: Google Scholar
  14. H. Dargatz, T. Diefenthal, V. Witte, G. Reipen, and D. von Wettstein, “The heterodimeric protease clostripain from Clostridium histolyticum is encoded by a single gene,” Mol. Gen. Genet., vol. 240, pp. 140–145, 1993. View at: Google Scholar
  15. W.M. de Vos, W.G. Voorhorst, M. Dijkgraaf, L.D. Kluskens, J. van der Oost, and R.J. Siezen, “Purification, characterization, and molecular modeling of pyrolysin and other extracellular thermostable serine proteases from hyperthermophilic microorganisms,” Methods Enzymol., vol. 330, pp. 383–393, 2001. View at: Google Scholar
  16. G. Deckert, P.V. Warren, T. Gaasterland et al., “The complete genome of the hyperthermophilic bacterium Aquifex aeolicus,” Nature, vol. 392, pp. 353–358, 1998. View at: Google Scholar
  17. G.N. DeMartino and C.A. Slaughter, “The proteasome, a novel protease regulated by multiple mechanisms,” J. Biol. Chem., vol. 274, pp. 22123–22126, 1999. View at: Google Scholar
  18. R. Dib, J.M. Chobert, M. Dalgalarrondo, G. Barbier, and T. Haertle, “Purification, molecular properties and specificity of a thermoactive and thermostable proteinase from Pyrococcus abyssi, strain st 549, hyperthermophilic archaea from deep-sea hydrothermal ecosystem,” FEBS Lett., vol. 431, pp. 279–284, 1998. View at: Google Scholar
  19. X.L. Du, I.G. Choi, R. Kim, W.R. Wang, J. Jancarik, H. Yokota, and S.H. Kim, “Crystal structure of an intracellular protease from Pyrococcus horikoshii at 2-Å resolution,” Proc. Natl. Acad. Sci. USA, vol. 97, pp. 14079–14084, 2000. View at: Google Scholar
  20. R.I. Eggen, A.C. Geerling, J. Watts, and W.M. de Vos, “Characterization of pyrolysin, a hyperthermoactive serine protease from the archaebacterium Pyrococcus furiosus,” FEMS Microbiol. Lett., vol. 71, pp. 17–20, 1990. View at: Google Scholar
  21. G. Erauso, A.-L. Reysenbach, A. Godfroy et al., “Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent,” Arch. Microbiol., vol. 160, pp. 338–349, 1993. View at: Google Scholar
  22. G. Fiala and K.O. Stetter, “Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C,” Arch. Microbiol., vol. 161, pp. 168–175, 1986. View at: Google Scholar
  23. M. Fusek, X.L. Lin, and J. Tang, “Enzymic properties of thermopsin,” J. Biol. Chem., vol. 265, pp. 1496–1501, 1990. View at: Google Scholar
  24. A.L. Goldberg, “Probing the proteasome pathway,” Nat. Biotechnol., vol. 18, pp. 494–496, 2000. View at: Google Scholar
  25. J.M. Gonzalez, Y. Masuchi, F.T. Robb, J.W. Ammerman, M. Yanagibayashi, J. Tamaoka, and C. Kato, “Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough,” Extremophiles, vol. 2, pp. 123–130, 1998. View at: Google Scholar
  26. S. Gottesman, “Proteases and their targets in Escherichia coli,” Annu. Rev. Genet., vol. 30, pp. 465–506, 1996. View at: Google Scholar
  27. S. Gottesman, “Regulation by proteolysis: developmental switches,” Curr. Opin. Microbiol., vol. 2, pp. 142–147, 1999. View at: Google Scholar
  28. E. Guedon, P. Renault, S.D. Ehrlich, and C. Delorme, “Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply,” J. Bacteriol., vol. 183, pp. 3614–3622, 2001. View at: Google Scholar
  29. S.B. Halio, I.I. Blumentals, S.A. Short, B.M. Merrill, and R.M. Kelly, “Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (PfpI) from the hyperthermophilic archaeon Pyrococcus furiosus,” J. Bacteriol., vol. 178, pp. 2605–2612, 1996. View at: Google Scholar
  30. S.B. Halio, M.W. Bauer, S. Mukund, M.W.W. Adams, and R.M. Kelly, “Purification and characterization of intracellular protease PfpI from the hyperthermophilic archaeon Pyrococcus furiosus,” Appl. Environ. Microbiol., vol. 63, pp. 289–295, 1997. View at: Google Scholar
  31. M. Hecker, W. Schumann, and U. Volker, “Heat-shock and general stress response in Bacillus subtilis,” Mol. Microbiol., vol. 19, pp. 417–428, 1996. View at: Google Scholar
  32. P.M. Hicks, K.D. Rinker, J.R. Baker, and R.M. Kelly, “Homomultimeric protease in the hyperthermophilic bacterium Thermotoga maritima has structural and amino acid sequence homology to bacteriocins in mesophilic bacteria,” FEBS Lett., vol. 440, pp. 393–398, 1998. View at: Google Scholar
  33. P.M. Hicks, L.S. Chang, and R.M. Kelly, “Homomultimeric protease and putative bacteriocin homolog from Thermotoga maritima,” Methods Enzymol., vol. 330, pp. 455–460, 2001. View at: Google Scholar
  34. R. Huber, T.A. Langworthy, H. König, M. Thomm, C.R. Woese, U.B. Sleytr, and K.O. Stetter, “Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C,” Arch. Microbiol., vol. 144, pp. 324–333, 1986. View at: Google Scholar
  35. Y. Kannan, Y. Koga, and Y. Koga, “Active subtilisin-like protease from a hyperthermophilic archaeon in a form with a putative prosequence,” Appl. Environ. Microbiol., vol. 67, pp. 2445–2452, 2001. View at: Google Scholar
  36. Y. Kawarabayasi, M. Sawada, H. Horikawa et al., “Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3,” DNA Res., vol. 5, pp. 55–76, 1998. View at: Google Scholar
  37. A.R. Khan, S. Nirasawa, S. Kaneko, T. Shimonishi, and K. Hayashi, “Characterization of a solvent resistant and thermostable aminopeptidase from the hyperthermophillic bacterium, Aquifex aeolicus,” Enzyme Microb. Technol., vol. 27, pp. 83–88, 2000. View at: Google Scholar
  38. A.F. Kisselev, T.N. Akopian, and A.L. Goldberg, “Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes,” J. Biol. Chem., vol. 273, pp. 1982–1989, 1998. View at: Google Scholar
  39. M. Klingeberg, B. Galunsky, C. Sjoholm, V. Kasche, and G. Antranikian, “Purification and properties of a highly thermostable, sodium dodecyl sulfate-resistant and stereospecific proteinase from the extremely thermophilic archaeon Thermococcus stetteri,” Appl. Environ. Microbiol., vol. 61, pp. 3098–3104, 1995. View at: Google Scholar
  40. E.V. Koonin, Y.I. Wolf, and L. Aravind, “Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach,” Genome Res., vol. 11, pp. 240–252, 2001. View at: Google Scholar
  41. T. Langer, “AAA proteases: cellular machines for degrading membrane proteins,” TIBS., vol. 25, pp. 247–251, 2000. View at: Google Scholar
  42. X. Lin, M. Fusek, and J. Tang, “Thermopsin, a thermostable acid protease from Sulfolobus acidocaldarius,” Adv. Exp. Med. Biol., vol. 306, pp. 255–257, 1991. View at: Google Scholar
  43. J. Lowe, D. Stock, B. Jap, P. Zwickl, W. Baumeister, and R. Huber, “Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution.,” Science, vol. 268, pp. 533–539, 1995. View at: Google Scholar
  44. A. Lupas, J.M. Flanagan, T. Tamura, and W. Baumeister, “Self-compartmentalizing proteases,” Trends Biochem. Sci., vol. 22, pp. 399–404, 1997. View at: Google Scholar
  45. J.A. Maupin-Furlow and J.G. Ferry, “A proteasome from the methanogenic archaeon Methanosarcina thermophila,” J. Biol. Chem., vol. 270, pp. 28617–28622, 1995. View at: Google Scholar
  46. J.A. Maupin-Furlow, H.L. Wilson, S.J. Kaczowka, and M.S. Ou, “Proteasomes in the Archaea: from structure to function,” Front. Biosci., vol. 5, pp. 837–865, 2000. View at: Google Scholar
  47. M.R. Maurizi, “Proteases and protein degradation in Escherichia coli,” Experientia, vol. 48, pp. 178–201, 1992. View at: Google Scholar
  48. J. Mayr, A. Lupas, J. Kellermann, C. Eckerskorn, W. Baumeister, and J. Peters, “A hyperthermostable protease of the subtilisin family bound to the surface layer of the archaeon Staphylothermus marinus,” Curr. Biol., vol. 6, pp. 739–749, 1996. View at: Google Scholar
  49. M. Morikawa, Y. Izawa, N. Rashid, T. Hoaki, and T. Imanaka, “Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp,” Appl. Environ. Microbiol., vol. 60, pp. 4559–4566, 1994. View at: Google Scholar
  50. K.E. Nelson, R.A. Clayton, S.R. Gill et al., “Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima,” Nature, vol. 399, pp. 323–329, 1999. View at: Google Scholar
  51. J. Porankiewicz, J. Wang, and A.K. Clarke, “New insights into the ATP-dependent Clp protease: Escherichia coli and beyond,” Mol. Microbiol., vol. 32, pp. 449–458, 1999. View at: Google Scholar
  52. M. Rechsteiner, L. Hoffman, and W. Dubiel, “The multicatalytic and 26 S proteases,” J. Biol. Chem., vol. 268, pp. 6065–6068, 1993. View at: Google Scholar
  53. A. Ruepp, C. Eckerskorn, M. Bogyo, and W. Baumeister, “Proteasome function is dispensable under normal but not under heat shock conditions in Thermoplasma acidophilum,” FEBS Lett., vol. 425, pp. 87–90, 1998. View at: Google Scholar
  54. Y. Sako, P.C. Croocker, and Y. Ishida, “An extremely heat-stable extracellular proteinase (aeropyrolysin) from the hyperthermophilic archaeon Aeropyrum pernix K1,” FEBS Lett., vol. 415, pp. 329–334, 1997. View at: Google Scholar
  55. M. Schmidt, A.N. Lupas, and D. Finley, “Structure and mechanism of ATP-dependent proteases,” Curr. Opin. Chem. Biol., vol. 3, pp. 584–591, 1999. View at: Google Scholar
  56. W. Schumann, “FtsH—a single-chain charonin?” FEMS Microbiol. Rev., vol. 23, pp. 1–11, 1999. View at: Google Scholar
  57. T. Schäfer, M. Selig, and P. Schönheit, “Acetyl-CoA synthetase (ADP forming) in archaea, a novel enzyme involved in acetate formation and ATP synthesis,” Arch. Microbiol., vol. 159, pp. 72–83, 1993. View at: Google Scholar
  58. P. Schönheit and T. Schäfer, “Metabolism of hyperthermophiles,” World J. Microbiol. Biotechnol., vol. 11, pp. 26–57, 1995. View at: Google Scholar
  59. Q. She, R.K. Singh, F. Confalonieri et al., “The complete genome of the crenarchaeon Sulfolobus solfataricus P2,” Proc. Natl. Acad. Sci. USA, vol. 98, pp. 7835–7840, 2001. View at: Google Scholar
  60. B. Snel, G. Lehmann, P. Bork, and M.A. Huynen, “STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene,” Nucleic Acids Res., vol. 28, pp. 3442–3444, 2000. View at: Google Scholar
  61. N. Tamura, F. Lottspeich, W. Baumeister, and T. Tamura, “The role of tricorn protease and its aminopeptidase-interacting factors in cellular protein degradation,” Cell, vol. 95, pp. 637–648, 1998. View at: Google Scholar
  62. T. Tomoyasu, A. Mogk, H. Langen, P. Goloubinoff, and B. Bukau, “Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Eschirichia coli cytosol,” Mol. Microbiol., vol. 40, pp. 397–413, 2001. View at: Google Scholar
  63. N. Valdes-Stauber and S. Scherer, “Nucleotide sequence and taxonomical distribution of the bacteriocin gene lin cloned from Brevibacterium linens M18,” Appl. Environ. Microbiol., vol. 62, pp. 1283–1286, 1996. View at: Google Scholar
  64. W.G. Voorhorst, R.I. Eggen, A.C. Geerling, C. Platteeuw, R.J. Siezen, and W.M. de Vos, “Isolation and characterization of the hyperthermostable serine protease, pyrolysin, and its gene from the hyperthermophilic archaeon Pyrococcus furiosus,” J. Biol. Chem., vol. 271, pp. 20426–20431, 1996. View at: Google Scholar
  65. W.G. Voorhorst, A. Warner, W.M. de Vos, and R.J. Siezen, “Homology modelling of two subtilisin-like proteases from the hyperthermophilic archaea Pyrococcus furiosus and Thermococcus stetteri,” Protein Eng., vol. 10, pp. 905–914, 1997. View at: Google Scholar
  66. H.L. Wilson, H.C. Aldrich, and J. Maupin-Furlow, “Halophilic 20S proteasomes of the archaeon Haloferax volcanii: purification, characterization, and gene sequence analysis,” J. Bacteriol., vol. 181, pp. 5814–5824, 1999. View at: Google Scholar
  67. H.L. Wilson, M.S. Ou, H.C. Aldrich, and J. Maupin-Furlow, “Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome,” J. Bacteriol., vol. 182, pp. 1680–1692, 2000. View at: Google Scholar
  68. W. Zillig, K.O. Stetter, S. Wunderl, W. Schulz, H. Priess, and I. Scholz, “The Sulfolobus “Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases,” Arch. Microbiol., vol. 125, pp. 259–269, 1980. View at: Google Scholar

Copyright © 2002 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views123
Downloads742
Citations

Related articles