Table of Contents Author Guidelines Submit a Manuscript
Volume 1 (2002), Issue 2, Pages 113-121
Research Article

Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air

1Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan, and Core Research for Evolutional Science and Technology Program of Japan Science and Technology Corporation (CREST-JST), Kawaguchi, Saitama 332-0012, Japan
2National Institute of Molecular Biology and Biotechnology, University of the Philippines Los Baños, College 4031, Laguna, Philippines

Received 10 May 2001; Accepted 1 March 2002

Copyright © 2002 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M.W.W. Adams and R.M. Kelly, “Finding and using hyperthermophilic enzymes,” Trends Biotechnol., vol. 16, pp. 329–332, 1998. View at Google Scholar
  2. J.P. Amend and E.L. Shock, “Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria,” FEMS Microbiol. Rev., vol. 25, pp. 175–243, 2001. View at Google Scholar
  3. W.E. Balch, G.E. Fox, L.J. Magrum, C.R. Woese, and R.S. Wolfe, “Methanogens: reevaluation of a unique biological group,” Microbiol. Rev., vol. 43, pp. 260–296, 1979. View at Google Scholar
  4. E. Blöchl, R. Rachel, S. Burggraf, D. Hafenbradl, H.W. Jannasch, and K.O. Stetter, “Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C.,” Extremophiles, vol. 1, pp. 14–21, 1997. View at Google Scholar
  5. E.A. Bonch-Osmolovskaya, M.L. Miroshnichenko, N.A. Kostrikina, N.A. Chernych, and G.A. Zavarzin, “Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs.,” Arch. Microbiol., vol. 154, pp. 556–559, 1990. View at Google Scholar
  6. T.D. Brock, K.M. Brock, R.T. Belly, and R.L. Weiss, “Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature,” Arch. Mikrobiol., vol. 84, pp. 54–68, 1972. View at Google Scholar
  7. J. Castresana and D. Moreira, “Respiratory chains in the last common ancestor of living organisms,” J. Mol. Evol., vol. 49, pp. 453–460, 1999. View at Google Scholar
  8. T. Ezaki, Y. Hashimoto, and E. Yabuuchi, “Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains,” Int. J. Syst. Bacteriol., vol. 39, pp. 224–229, 1989. View at Google Scholar
  9. J. Felsenstein, “Evolutionary trees from DNA sequences: a maximum likelihood approach,” J. Mol. Evol., vol. 17, pp. 368–376, 1981. View at Google Scholar
  10. F. Fischer, W. Zillig, K.O. Stetter, and G. Schreiber, “Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria,” Nature, vol. 301, pp. 511–513, 1983. View at Google Scholar
  11. D.W. Grogan, “Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains,” J. Bacteriol., vol. 171, pp. 6710–6719, 1989. View at Google Scholar
  12. T. Hara, T. Shimoda, K. Nonaka, and S. Ogata, “Colorimetric detection of DNA–DNA hybridization microdilution wells for taxonomic application on bacterial strains,” J. Ferment. Bioeng., vol. 72, pp. 122–124, 1991. View at Google Scholar
  13. H. Huber and K.O. Stetter, “Hyperthermophiles and their possible potential in biotechnology,” J. Biotechnol., vol. 64, pp. 39–52, 1998. View at Google Scholar
  14. R. Huber, J.K. Kristjansson, and K.O. Stetter, “Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C.,” Arch. Microbiol., vol. 149, pp. 95–101, 1987. View at Google Scholar
  15. R. Huber, T. Wilharm, and T. Wilharm, “Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria.,” Syst. Appl. Microbiol., vol. 15, pp. 340–351, 1992. View at Google Scholar
  16. R. Huber, M. Sacher, A. Vollmann, H. Huber, and D. Rose, “Respiration of arsenate and selenate by hyperthermophilic archaea,” Syst. Appl. Microbiol., vol. 23, pp. 305–314, 2000. View at Google Scholar
  17. T. Itoh, K. Suzuki, and T. Nakase, “Occurrence of introns in the 16S rRNA genes of members of the genus Thermoproteus,” Arch. Microbiol., vol. 170, pp. 155–161, 1998. View at Google Scholar
  18. T. Itoh, K. Suzuki, P.C. Sanchez, and T. Nakase, “Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines.,” Int. J. Syst. Bacteriol., vol. 49, pp. 1157–1163, 1999. View at Google Scholar
  19. N. Kurosawa, Y.H. Itoh, and Y.H. Itoh, “Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales,” Int. J. Syst. Bacteriol., vol. 48, pp. 451–456, 1998. View at Google Scholar
  20. G.J. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek, “fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood,” Comput. Appl. Biosci., vol. 10, pp. 41–48, 1994. View at Google Scholar
  21. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Mol. Biol. Evol., vol. 4, pp. 406–425, 1987. View at Google Scholar
  22. Y. Sako, N. Nomura, and N. Nomura, “Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 °C.,” Int. J. Syst. Bacteriol., vol. 46, pp. 1070–1077, 1996. View at Google Scholar
  23. Y. Sako, T. Nunoura, and A. Uchida, “Pyrobaculum oguniense sp. nov., a novel facultatively aerobic and hyperthermophilic archaeon growing at up to 97 °C.,” Int. J. Syst. Evol. Microbiol., vol. 51, pp. 303–309, 2001. View at Google Scholar
  24. J. Sambrook and D.W. Russell, “Molecular cloning: A laboratory manual,” Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 3rd Edn. edition, 2001. View at Google Scholar
  25. S. Schäfer, C. Barkowski, and G. Fuchs, “Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus,” Arch. Microbiol., vol. 146, pp. 301–308, 1986. View at Google Scholar
  26. A. Segerer, A. Neuner, J.K. Kristjansson, and K.O. Stetter, “Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria,” Int. J. Syst. Bacteriol., vol. 36, pp. 559–564, 1986. View at Google Scholar
  27. K.O. Stetter, “Extremophiles and their adaptation to hot environments,” FEBS Lett., vol. 452, pp. 22–25, 1999. View at Google Scholar
  28. H. Takagi, O. Shida, K. Kadowaki, K. Komagata, and S. Udaka, “Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp. nov., Bacillus choshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov.,” Int. J. Syst. Bacteriol., vol. 43, pp. 221–231, 1993. View at Google Scholar
  29. J. Tamaoka and K. Komagata, “Determination of DNA-base composition by reversed-phase high-performance liquid chromatography,” FEMS Microbiol. Lett., vol. 25, pp. 125–128, 1984. View at Google Scholar
  30. J.D. Thompson, D.G. Higgins, and T.J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Res., vol. 22, pp. 4673–4680, 1994. View at Google Scholar
  31. M. Vargas, K. Kashefi, E.L. Blunt-Harris, and D.R. Lovley, “Microbiological evidence for Fe(III) reduction on early Earth,” Nature, vol. 395, pp. 65–67, 1998. View at Google Scholar
  32. P. Völkl, R. Huber, E. Drobner, R. Rachel, S. Burggraf, A. Trincone, and K.O. Stetter, “Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum,” Appl. Environ. Microbiol., vol. 59, pp. 2918–2926, 1993. View at Google Scholar
  33. W. Zillig, K.O. Stetter, W. Schäfer, D. Janekovic, S. Wunderl, I. Holz, and P. Palm, “Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras,” Zentbl. Bakteriol. Hyg. Abt. 1 Orig. C., vol. 2, pp. 205–227, 1981. View at Google Scholar