Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2010, Article ID 485051, 11 pages
http://dx.doi.org/10.1155/2010/485051
Review Article

Archaea Signal Recognition Particle Shows the Way

1Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
2Department of Biology, Division of Business and Sciences, Jarvis Christian College, P.O. Box 1470, Hawkins, TX 75765, USA

Received 15 April 2010; Accepted 14 May 2010

Academic Editor: Jerry Eichler

Copyright © 2010 Christian Zwieb and Shakhawat Bhuiyan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Rosenblad, N. Larsen, T. Samuelsson, and C. Zwieb, “Kinship in the SRP RNA family,” RNA Biology, vol. 6, no. 5, pp. 508–516, 2009. View at Google Scholar
  2. K. F. Stengel, I. Holdermann, P. Cain, C. Robinson, K. Wild, and I. Sinning, “Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43,” Science, vol. 321, no. 5886, pp. 253–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Zwieb and J. Eichler, “Getting on target: the archaeal signal recognition particle,” Archaea, vol. 1, no. 1, pp. 27–34, 2002. View at Google Scholar · View at Scopus
  4. R. G. Moll, “The archaeal signal recognition particle: steps toward membrane binding,” Journal of Bioenergetics and Biomembranes, vol. 36, no. 1, pp. 47–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. H. G. Koch, M. Moser, and M. Müller, “Signal recognition particle-dependent protein targeting, universal to all kingdoms of life,” Reviews of Physiology, Biochemistry and Pharmacology, vol. 146, pp. 55–94, 2003. View at Google Scholar · View at Scopus
  6. K. Nagai, C. Oubridge, A. Kuglstatter, E. Menichelli, C. Isel, and L. Jovine, “Structure, function and evolution of the signal recognition particle,” EMBO Journal, vol. 22, no. 14, pp. 3479–3485, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. Doudna and R. T. Batey, “Structural insights into the signal recognition particle,” Annual Review of Biochemistry, vol. 73, pp. 539–557, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Halic and R. Beckmann, “The signal recognition particle and its interactions during protein targeting,” Current Opinion in Structural Biology, vol. 15, no. 1, pp. 116–125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S.-O. Shan and P. Walter, “Co-translational protein targeting by the signal recognition particle,” FEBS Letters, vol. 579, no. 4, pp. 921–926, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. G. D. Sprott, “Structures of archaebacterial membrane lipids,” Journal of Bioenergetics and Biomembranes, vol. 24, no. 6, pp. 555–566, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. J. L. C. M. Van de Vossenberg, A. J. M. Driessen, and W. N. Konings, “The essence of being extremophilic: the role of the unique archaeal membrane lipids,” Extremophiles, vol. 2, no. 3, pp. 163–170, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. G. von Heijne, “The signal peptide,” Journal of Membrane Biology, vol. 115, no. 3, pp. 195–201, 1990. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Pohlschröder, M. I. Giménez, and K. F. Jarrell, “Protein transport in Archaea: Sec and twin arginine translocation pathways,” Current Opinion in Microbiology, vol. 8, no. 6, pp. 713–719, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Y. M. Ng, B. Chaban, D. J. VanDyke, and K. F. Jarrell, “Archaeal signal peptidases,” Microbiology, vol. 153, no. 2, pp. 305–314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S.-V. Albers, Z. Szabó, and A. J. M. Driessen, “Protein secretion in the Archaea: multiple paths towards a unique cell surface,” Nature Reviews Microbiology, vol. 4, no. 7, pp. 537–547, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Calo and J. Eichler, “Crossing the membrane in Archaea, the third domain of life,” Biochimica et Biophysica Acta. In press. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Yuan, J. C. Zweers, J. M. van Dijl, and R. E. Dalbey, “Protein transport across and into cell membranes in bacteria and archaea,” Cellular and Molecular Life Sciences, vol. 67, no. 2, pp. 179–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Kouranov, L. Xie, J. de la Cruz et al., “The RCSB PDB information portal for structural genomics,” Nucleic Acids Research, vol. 34, pp. D302–305, 2006. View at Google Scholar · View at Scopus
  19. G. Montoya, K. te Kaat, R. Moll, G. Schäfer, and I. Sinning, “The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP-SRP receptor complex,” Structure, vol. 8, no. 5, pp. 515–525, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. K. R. Rosendal, K. Wild, G. Montoya, and I. Sinning, “Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 14701–14706, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Y. Janda, J. Li, C. Oubridge, H. Hernández, C. V. Robinson, and K. Nagai, “Recognition of a signal peptide by the signal recognition particle,” Nature, vol. 465, no. 7297, pp. 507–510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Wild, G. Bange, G. Bozkurt, B. Segnitz, A. Hendricks, and I. Sinning, “Structural insights into the assembly of the human and archaeal signal recognition particles,” Acta Crystallographica Section D, vol. 66, no. 3, pp. 295–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. O. N. Pakhomova, S. Deep, Q. Huang, C. Zwieb, and A. P. Hinck, “Solution structure of protein SRP19 of Archaeoglobus fulgidus signal recognition particle,” Journal of Molecular Biology, vol. 317, no. 1, pp. 145–158, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. U. Ilangovan, S. H. Bhuiyan, C. S. Hinck et al., “A. fulgidus SRP54 M-domain,” Journal of Biomolecular NMR, vol. 41, no. 4, pp. 241–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Hainz, S. Huang, and A. E. Sauer-Eriksson, “Interaction of signal-recognition particle 54 GTPase domain and signal-recognition particle RNA in the free signal-recognition particle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 38, pp. 14911–14916, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Hainzl, S. Huang, and A. E. Sauer-Eriksson, “Structure of the SRP19-RNA complex and implications for signal recognition particle assembly,” Nature, vol. 417, no. 6890, pp. 767–771, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Hainzl, S. Huang, and A. E. Sauer-Eriksson, “Structural insights into SRP RNA: an induced fit mechanism for SRP assembly,” RNA, vol. 11, no. 7, pp. 1043–1050, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. W. M. Clemons Jr., K. Gowda, S. D. Black, C. Zwieb, and V. Ramakrishnan, “Crystal structure of the conserved subdomain of human protein SRP54M at 2.1 Å resolution: evidence for the mechanism of signal peptide binding,” Journal of Molecular Biology, vol. 292, no. 3, pp. 697–705, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. P. F. Egea, J. Napetschnig, P. Walter, and R. M. Stroud, “Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus,” PLoS One, vol. 3, no. 10, Article ID e3528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. P. F. Egea, H. Tsuruta, G. P. de Leon, J. Napetschnig, P. Walter, and R. M. Stroud, “Structures of the signal recognition particle receptor from the Archaeon Pyrococcus furiosus: Implications for the targeting step at the membrane,” PLoS One, vol. 3, no. 11, Article ID e3619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Kollman and R. F. Doolittle, “Determining the relative rates of change for prokaryotic and eukaryotic proteins with anciently duplicated paralogs,” Journal of Molecular Evolution, vol. 51, no. 2, pp. 173–181, 2000. View at Google Scholar · View at Scopus
  32. N. Larsen and C. Zwieb, “SRP-RNA sequence alignment and secondary structure,” Nucleic Acids Research, vol. 19, no. 2, pp. 209–215, 1991. View at Google Scholar · View at Scopus
  33. C. Zwieb, R. W. Van Nues, M. A. Rosenblad, J. D. Brown, and T. Samuelsson, “A nomenclature for all signal recognition particle RNAs,” RNA, vol. 11, no. 1, pp. 7–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Halic, T. Becker, M. R. Pool et al., “Structure of the signal recognition particle interacting with the elongation-arrested ribosome,” Nature, vol. 427, no. 6977, pp. 808–814, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and E. W. Sayers, “GenBank,” Nucleic Acids Research, vol. 37, database issue, pp. D26–D31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Weichenrieder, K. Wild, K. Strub, and S. Cusack, “Structure and assembly of the Alu domain of the mammalian signal recognition particle,” Nature, vol. 408, no. 6809, pp. 167–173, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. E. S. Andersen, M. A. Rosenblad, N. Larsen et al., “The tmRDB and SRPDB resources,” Nucleic acids research., vol. 34, pp. D163–168, 2006. View at Google Scholar · View at Scopus
  38. M. Regalia, M. A. Rosenblad, and T. Samuelsson, “Prediction of signal recognition particle RNA genes,” Nucleic Acids Research, vol. 30, no. 15, pp. 3368–3377, 2002. View at Google Scholar · View at Scopus
  39. E. Iakhiaeva, J. Wower, I. K. Wower, and C. Zwieb, “The 5e motif of eukaryotic signal recognition particle RNA contains a conserved adenosine for the binding of SRP72,” RNA, vol. 14, no. 6, pp. 1143–1153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Iakhiaeva, J. Yin, and C. Zwieb, “Identification of an RNA-binding domain in human SRP72,” Journal of Molecular Biology, vol. 345, no. 4, pp. 659–666, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Darwin, “Modes of transition,” in The Origin of Species, chapter 6, John Murray, London, UK, 1859. View at Google Scholar
  42. S. J. Gould and E. S. Vrba, “Exaptation—a missing term in the science of form,” Paleobiology, vol. 8, no. 1, pp. 4–15, 1982. View at Google Scholar · View at Scopus
  43. S. Nolivos, A. J. Carpousis, and B. Clouet-d'Orval, “The K-loop, a general feature of the Pyrococcus C/D guide RNAs, is an RNA structural motif related to the K-turn,” Nucleic Acids Research, vol. 33, no. 20, pp. 6507–6514, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Stefl, L. Skrisovska, and F. H.-T. Allain, “RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle,” EMBO Reports, vol. 6, no. 1, pp. 33–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. J. C. Politz, S. Yarovoi, S. M. Kilroy, K. Gowda, C. Zwieb, and T. Pederson, “Signal recognition particle components in the nucleolus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 1, pp. 55–60, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. T. S. Maity and K. M. Weeks, “A threefold RNA-protein interface in the signal recognition particle gates native complex assembly,” Journal of Molecular Biology, vol. 369, no. 2, pp. 512–524, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Maeshima, E. Okuno, T. Aimi, T. Morinaga, and T. Itoh, “An archaeal protein homologous to mammalian SRP54 and bacterial Ffh recognizes a highly conserved region of SRP RNA,” FEBS Letters, vol. 507, no. 3, pp. 336–340, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Tozik, Q. Huang, C. Zwieb, and J. Eichler, “Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii,” Nucleic Acids Research, vol. 30, no. 19, pp. 4166–4175, 2002. View at Google Scholar · View at Scopus
  49. J. Yin, Q. Huang, O. N. Pakhomova, A. P. Hinck, and C. Zwieb, “The conserved adenosine in helix 6 of Archaeoglobus fulgidus signal recognition particle RNA initiates SRP assembly,” Archaea, vol. 1, no. 4, pp. 269–275, 2004. View at Google Scholar · View at Scopus
  50. A. Kuglstatter, C. Oubridge, and K. Nagai, “Induced structural changes of 7SL RNA during the assembly of human signal recognition particle,” Nature Structural Biology, vol. 9, no. 10, pp. 740–744, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Sánchez, J.-M. Beckerich, C. Gaillardin, and A. Domínguez, “Isolation and cloning of the Yarrowia lipolytica SEC65 gene, a component of the yeast signal recognition particle displaying homology with the human SRP19 gene,” Gene, vol. 203, no. 1, pp. 75–84, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Yurist, I. Dahan, and J. Eichler, “SRP19 is a dispensable component of the signal recognition particle in Archaea,” Journal of Bacteriology, vol. 189, no. 1, pp. 276–279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. R. W. Rose and M. Pohlschröder, “In vivo analysis of an essential archaeal signal recognition particle in its native host,” Journal of Bacteriology, vol. 184, no. 12, pp. 3260–3267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Moser, O. Mol, R. S. Goody, and I. Sinning, “The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 21, pp. 11339–11344, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. P. J. Rapiejko and R. Gilmore, “Empty site forms of the SRP54 and SRα GTPase mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum,” Cell, vol. 89, no. 5, pp. 703–713, 1997. View at Google Scholar · View at Scopus
  56. R. J. Keenan, D. M. Freymann, P. Walter, and R. M. Stroud, “Crystal structure of the signal sequence binding subunit of the signal recognition particle,” Cell, vol. 94, no. 2, pp. 181–191, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. R. T. Batey, R. P. Rambo, L. Lucast, B. Rha, and J. A. Doudna, “Crystal structure of the ribonucleoprotein core of the signal recognition particle,” Science, vol. 287, no. 5456, pp. 1232–1239, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. J. A. Newitt and H. D. Bernstein, “The N-domain of the signal recognition particle 54-kDa subunit promotes efficient signal sequence binding,” European Journal of Biochemistry, vol. 245, no. 3, pp. 720–729, 1997. View at Google Scholar · View at Scopus
  59. E. M. Clérico, A. Szymanska, and L. M. Gierasch, “Exploring the interactions between signal sequences and E. coli SRP by two distinct and complementary crosslinking methods,” Biopolymers, vol. 92, no. 3, pp. 201–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. J. D. Miller, H. D. Bernstein, and P. Walter, “Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor,” Nature, vol. 367, no. 6464, pp. 657–659, 1994. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Althoff, D. Selinger, and J. A. Wise, “Molecular evolution of SRP cycle components: functional implications,” Nucleic Acids Research, vol. 22, no. 11, pp. 1933–1947, 1994. View at Google Scholar · View at Scopus
  62. S. Gribaldo and P. Cammarano, “The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery,” Journal of Molecular Evolution, vol. 47, no. 5, pp. 508–516, 1998. View at Publisher · View at Google Scholar · View at Scopus
  63. P. F. Egea, S.-O. Shan, J. Napetschnig, D. F. Savage, P. Walter, and R. M. Stroud, “Substrate twinning activates the signal recognition particle and its receptor,” Nature, vol. 427, no. 6971, pp. 215–221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Zelazny, A. Seluanov, A. Cooper, and E. Bibi, “The NG domain of the prokaryotic signal recognition particle receptor, FtsY, is fully functional when fused to an unrelated integral membrane polypeptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 12, pp. 6025–6029, 1997. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Bibi, A. A. Herskovits, E. S. Bochkareva, and A. Zelazny, “Putative integral membrane SRP receptors,” Trends in Biochemical Sciences, vol. 26, no. 1, pp. 15–16, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. S. A. Ladefoged and G. Christiansen, “A GTP-binding protein of Mycoplasma hominis: a small sized homolog to the signal recognition particle receptor FtsY,” Gene, vol. 201, no. 1-2, pp. 37–44, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. I. V. Shepotinovskaya and D. M. Freymann, “Conformational change of the N-domain on formation of the complex between the GTPase domains of Thermus aquaticus Ffh and FtsY,” Biochimica et Biophysica Acta, vol. 1597, no. 1, pp. 107–114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Lichi, G. Ring, and J. Eichler, “Membrane binding of SRP pathway components in the halophilic archaea Haloferax volcanii,” European Journal of Biochemistry, vol. 271, no. 7, pp. 1382–1390, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Haddad, R. W. Rose, and M. Pohlschröder, “The Haloferax volcanii FtsY homolog is critical for haloarchaeal growth but does not require the A domain,” Journal of Bacteriology, vol. 187, no. 12, pp. 4015–4022, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Luirink, C. M. Ten Hagen-Jongman, C. C. van der Weijden et al., “An alternative protein targeting pathway in Escherichia coli: Studies on the role of FtsY,” EMBO Journal, vol. 13, no. 10, pp. 2289–2296, 1994. View at Google Scholar · View at Scopus
  71. H.-J. Dong, J.-Y. Jiang, and Y.-Q. Li, “The distinct anchoring mechanism of FtsY from different microbes,” Current Microbiology, vol. 59, no. 3, pp. 336–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Mircheva, D. Boy, B. Weiche, F. Hucke, P. Graumann, and H.-G. Koch, “Predominant membrane localization is an essential feature of the bacterial signal recognition particle receptor,” BMC Biology, vol. 7, article no. 76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. E. de Leeuw, D. Poland, O. Mol et al., “Membrane association of FtsY, the E. coli SRP receptor,” FEBS Letters, vol. 416, no. 3, pp. 225–229, 1997. View at Publisher · View at Google Scholar · View at Scopus
  74. E. de Leeuw, K. te Kaat, C. Moser et al., “Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity,” EMBO Journal, vol. 19, no. 4, pp. 531–541, 2000. View at Google Scholar · View at Scopus
  75. R. Parlitz, A. Eitan, G. Stjepanovic et al., “Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix,” Journal of Biological Chemistry, vol. 282, no. 44, pp. 32176–32184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. N. J. Marty, D. Rajalingam, A. D. Kight et al., “The membrane-binding motif of the chloroplast signal recognition particle receptor (cpFtsY) regulates GTPase activity,” Journal of Biological Chemistry, vol. 284, no. 22, pp. 14891–14903, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Angelini, S. Deitermann, and H.-G. Koch, “FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon,” EMBO Reports, vol. 6, no. 5, pp. 476–481, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Weiche, J. Bürk, S. Angelini, E. Schiltz, J. O. Thumfart, and H.-G. Koch, “A cleavable N-terminal membrane anchor is involved in membrane binding of the Escherichia coli SRP receptor,” Journal of Molecular Biology, vol. 377, no. 3, pp. 761–773, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Bahari, R. Parlitz, A. Eitan et al., “Membrane targeting of ribosomes and their release require distinct and separable functions of FtsY,” Journal of Biological Chemistry, vol. 282, no. 44, pp. 32168–32175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Moll, S. Schmidtke, and G. Schäfer, “Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens Ffh-homologous protein suggest an SRP-like complex in archaea,” European Journal of Biochemistry, vol. 259, no. 1-2, pp. 441–448, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. S. H. Bhuiyan, K. Gowda, H. Hotokezaka, and C. Zwieb, “Assembly of archaeal signal recognition particle from recombinant components,” Nucleic Acids Research, vol. 28, no. 6, pp. 1365–1373, 2000. View at Google Scholar · View at Scopus
  82. J. L. Diener and C. Wilson, “Role of SRP19 in assembly of the Archaeoglobus fulgidus signal recognition particle,” Biochemistry, vol. 39, no. 42, pp. 12862–12874, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Gropp, F. Gropp, and M. C. Betlach, “Association of the halobacterial 7S RNA to the polysome correlates with expression of the membrane protein bacterioopsin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 4, pp. 1204–1208, 1992. View at Google Scholar · View at Scopus
  84. H. Dale and M. P. Krebs, “Membrane insertion kinetics of a protein domain in vivo. The bacterioopsin N terminus inserts co-translationally,” Journal of Biological Chemistry, vol. 274, no. 32, pp. 22693–22698, 1999. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Dale, C. M. Angevine, and M. P. Krebs, “Ordered membrane insertion of an archaeal opsin in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 14, pp. 7847–7852, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. G. Ring and J. Eichler, “Extreme secretion: protein translocation across the archaleal plasma membrane,” Journal of Bioenergetics and Biomembranes, vol. 36, no. 1, pp. 35–45, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Ortenberg and M. Mevarech, “Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii,” Journal of Biological Chemistry, vol. 275, no. 30, pp. 22839–22846, 2000. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Wild, M. Halic, I. Sinning, and R. Beckmann, “SRP meets the ribosome,” Nature Structural and Molecular Biology, vol. 11, no. 11, pp. 1049–1053, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. A. K. K. Lakkaraju, C. Mary, A. Scherrer, A. E. Johnson, and K. Strub, “SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites,” Cell, vol. 133, no. 3, pp. 440–451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. S. McGinnis and T. L. Madden, “BLAST: at the core of a powerful and diverse set of sequence analysis tools,” Nucleic Acids Research, vol. 32, pp. W20–W25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. E. S. Andersen, A. Lind-Thomsen, B. Knudsen et al., “Semiautomated improvement of RNA alignments,” RNA, vol. 13, no. 11, pp. 1850–1859, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. R. C. Edgar, “MUSCLE: multiple sequence alignment with high accuracy and high throughput,” Nucleic Acids Research, vol. 32, no. 5, pp. 1792–1797, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Clamp, J. Cuff, S. M. Searle, and G. J. Barton, “The Jalview Java alignment editor,” Bioinformatics, vol. 20, no. 3, pp. 426–427, 2004. View at Publisher · View at Google Scholar · View at Scopus