Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2010, Article ID 612948, 13 pages
http://dx.doi.org/10.1155/2010/612948
Review Article

S-Layer Glycoproteins and Flagellins: Reporters of Archaeal Posttranslational Modifications

1Department of Microbiology and Immunology, Queen's University, Kingston, ON, Canada K7L 3N6
2Department of Life Sciences, Ben Gurion University, Beersheva 84105, Israel

Received 8 April 2010; Accepted 15 June 2010

Academic Editor: Joerg Soppa

Copyright © 2010 Ken F. Jarrell et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. R. Woese, “The archaeal concept and the world it lives in: a retrospective,” Photosynthesis Research, vol. 80, no. 1–3, pp. 361–372, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. G. E. Fox, E. Stackebrandt, R. B. Hespell et al., “The phylogeny of prokaryotes,” Science, vol. 209, no. 4455, pp. 457–463, 1980. View at Google Scholar · View at Scopus
  3. C. R. Woese and G. E. Fox, “Phylogenetic structure of the prokaryotic domain: the primary kingdoms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 11, pp. 5088–5090, 1977. View at Google Scholar · View at Scopus
  4. W. Zillig, “Comparative biochemistry of Archaea and Bacteria,” Current Opinion in Genetics and Development, vol. 1, no. 4, pp. 544–551, 1991. View at Google Scholar · View at Scopus
  5. K. F. Jarrell, D. J. VanDyke, and J. Wu, “Archaeal flagella and pili,” in Pili and Flagella: Current Research and Future Trends, K. F. Jarrell, Ed., pp. 215–234, Caister Academic Press, Norfolk, UK, 2009. View at Google Scholar
  6. O. Kandler and H. Konig, “Cell envelopes of archaebacteria,” in The Bacteria. A Treatise on Structure and Function, Academic Press, Orlando, Fla, USA, 1985. View at Google Scholar
  7. L. J. Magrum, K. R. Luehrsen, and C. R. Woese, “Are extreme halophiles actually “bacteria”?” Journal of Molecular Evolution, vol. 11, no. 1, pp. 1–8, 1978. View at Google Scholar · View at Scopus
  8. S. Y. M. Ng, B. Zolghadr, A. J. M. Driessen, S.-V. Albers, and K. F. Jarrell, “Cell surface structures of archaea,” Journal of Bacteriology, vol. 190, no. 18, pp. 6039–6047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Nickell, R. Hegerl, W. Baumeister, and R. Rachel, “Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography,” Journal of Structural Biology, vol. 141, no. 1, pp. 34–42, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Moissl, R. Rachel, A. Briegel, H. Engelhardt, and R. Huber, “The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks,” Molecular Microbiology, vol. 56, no. 2, pp. 361–370, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. A. Wang, X. Yu, S. Y. M. Ng, K. F. Jarrell, and E. H. Egelman, “The structure of an archaeal pilus,” Journal of Molecular Biology, vol. 381, no. 2, pp. 456–466, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. K. F. Jarrell and M. J. McBride, “The surprisingly diverse ways that prokaryotes move,” Nature Reviews Microbiology, vol. 6, no. 6, pp. 466–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. F. Mescher and J. L. Strominger, “Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium,” The Journal of Biological Chemistry, vol. 251, no. 7, pp. 2005–2014, 1976. View at Google Scholar · View at Scopus
  14. J. Lechner and M. Sumper, “The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria,” The Journal of Biological Chemistry, vol. 262, no. 20, pp. 9724–9729, 1987. View at Google Scholar · View at Scopus
  15. R. Mengele and M. Sumper, “Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles,” The Journal of Biological Chemistry, vol. 267, no. 12, pp. 8182–8185, 1992. View at Google Scholar · View at Scopus
  16. M. Sumper, “Halobacterial glycoprotein biosynthesis,” Biochimica et Biophysica Acta, vol. 906, no. 1, pp. 69–79, 1987. View at Google Scholar · View at Scopus
  17. S. Yurist-Doutsch, B. Chaban, D. J. VanDyke, K. F. Jarrell, and J. Eichler, “Sweet to the extreme: protein glycosylation in Archaea,” Molecular Microbiology, vol. 68, no. 5, pp. 1079–1084, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Y. M. Ng, B. Chaban, D. J. VanDyke, and K. F. Jarrell, “Archaeal signal peptidases,” Microbiology, vol. 153, no. 2, pp. 305–314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Abu-Qarn, J. Eichler, and N. Sharon, “Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea,” Current Opinion in Structural Biology, vol. 18, no. 5, pp. 544–550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Pohlschröder, M. I. Giménez, and K. F. Jarrell, “Protein transport in Archaea: sec and twin arginine translocation pathways,” Current Opinion in Microbiology, vol. 8, no. 6, pp. 713–719, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. L. Houwink, “Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study,” Journal of General Microbiology, vol. 15, pp. 146–150, 1956. View at Google Scholar
  22. W. Stoeckenius and R. Rowen, “A morphological study of Halobacterium halobium and its lysis in media of low salt concentration,” Journal of Cell Biology, vol. 34, no. 1, pp. 365–393, 1967. View at Google Scholar · View at Scopus
  23. H. Steensland and H. Larsen, “A study of the cell envelope of the halobacteria,” Journal of General Microbiology, vol. 55, no. 3, pp. 325–336, 1969. View at Google Scholar · View at Scopus
  24. R. G. Kirk and M. Ginzburg, “Ultrastructure of two species of Halobacterium,” Journal of Ultrasructure Research, vol. 41, no. 1-2, pp. 80–94, 1972. View at Google Scholar · View at Scopus
  25. A. E. Blaurock, W. Stoeckenius, D. Oesterhelt, and G. L. Scherphof, “Structure of the cell envelope of Halobacterium halobium,” Journal of Cell Biology, vol. 71, no. 1, pp. 1–22, 1976. View at Google Scholar · View at Scopus
  26. M. Kessel, I. Wildhaber, S. Cohen, and W. Baumeister, “Three-dimensional structure of the regular surface glycoprotein layer of Halobacterium volcanii from the Dead Sea,” The EMBO Journal, vol. 7, pp. 1549–1554, 1988. View at Google Scholar
  27. S. Trachtenberg, B. Pinnick, and M. Kessel, “The cell surface glycoprotein layer of the extreme halophile Halobacterium salinarum and its relation to Haloferax volcanii: cryo-electron tomography of freeze-substituted cells and projection studies of negatively stained envelopes,” Journal of Structural Biology, vol. 130, no. 1, pp. 10–26, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. O. Kandler and H. Konig, “Cell envelopes of archaea: structure and chemistry,” in The Biochemistry of Archaea, M. Kates, D. J. Kusher, and A. T. Matheson, Eds., pp. 223–259, Elsevier, Amsterdam, The Netherlands, 1993. View at Google Scholar
  29. H. Konig, K. O. Stetter, W. Postulka, and F. Klink, “Studies on archaebacterial S-layers,” Systematic and Applied Microbiology, vol. 7, pp. 300–309, 1986. View at Google Scholar · View at Scopus
  30. E. Nusser and H. Konig, “S layer studies on three species of Methanococcus living at different temperatures,” Canadian Journal of Microbiology, vol. 33, no. 3, pp. 256–261, 1987. View at Google Scholar · View at Scopus
  31. E. Akca, H. Claus, N. Schultz et al., “Genes and derived amino acid sequences of S-layer proteins from mesophilic, thermophilic, and extremely thermophilic methanococci,” Extremophiles, vol. 6, no. 5, pp. 351–358, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. S. F. Koval and K. F. Jarrell, “Ultrastructure and biochemistry of the cell wall of Methanococcus voltae,” Journal of Bacteriology, vol. 169, no. 3, pp. 1298–1306, 1987. View at Google Scholar · View at Scopus
  33. S. Voisin, R. S. Houliston, J. Kelly et al., “Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae,” The Journal of Biological Chemistry, vol. 280, no. 17, pp. 16586–16593, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. G. B. Patel, C. G. Choquet, J. H. E. Nash, and G. D. Sprott, “Formation and regeneration of Methanococcus voltae protoplasts,” Applied and Environmental Microbiology, vol. 59, no. 1, pp. 27–33, 1993. View at Google Scholar · View at Scopus
  35. G. B. Patel, J. H. E. Nash, B. J. Agnew, and G. D. Sprott, “Natural and electroporation-mediated transformation of Methanococcus voltae protoplasts,” Applied and Environmental Microbiology, vol. 60, no. 3, pp. 903–907, 1994. View at Google Scholar · View at Scopus
  36. U. Karcher, H. Schroder, E. Haslinger et al., “Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus,” The Journal of Biological Chemistry, vol. 268, no. 36, pp. 26821–26826, 1993. View at Google Scholar · View at Scopus
  37. K. R. Sowers, J. E. Boone, and R. P. Gunsalus, “Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity,” Applied and Environmental Microbiology, vol. 59, no. 11, pp. 3832–3839, 1993. View at Google Scholar · View at Scopus
  38. G.-W. Cheong, Z. Cejka, J. Peters, K. O. Stetter, and W. Baumeister, “The surface protein layer of Methanoplanus limicola: three-dimensional structure and chemical characterization,” Systematic and Applied Microbiology, vol. 14, no. 3, pp. 209–217, 1991. View at Google Scholar · View at Scopus
  39. G.-W. Cheong, R. Guckenberger, K.-H. Fuchs, H. Gross, and W. Baumeister, “The structure of the surface layer of Methanoplanus limicola obtained by a combined electron microscopy and scanning tunneling microscopy approach,” Journal of Structural Biology, vol. 111, no. 2, pp. 125–134, 1993. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Firtel, G. Southam, G. Harauz, and T. J. Beveridge, “Characterization of the cell wall of the sheathed methanogen Methanospirillum hungatei GP1 as an S layer,” Journal of Bacteriology, vol. 175, no. 23, pp. 7550–7560, 1993. View at Google Scholar · View at Scopus
  41. M. Stewart, T. J. Beveridge, and G. D. Sprott, “Crystalline order to high resolution in the sheath of Methanospirillum hungatei: a cross-beta structure,” Journal of Molecular Biology, vol. 183, no. 3, pp. 509–515, 1985. View at Google Scholar · View at Scopus
  42. T. J. Beveridge, G. D. Sprott, and P. Whippey, “Ultrastructure, inferred porosity, and gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium,” Journal of Bacteriology, vol. 173, no. 1, pp. 130–140, 1991. View at Google Scholar · View at Scopus
  43. D. Pum, P. Messner, and U. B. Sleytr, “Role of the S layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense,” Journal of Bacteriology, vol. 173, no. 21, pp. 6865–6873, 1991. View at Google Scholar · View at Scopus
  44. K. F. Jarrell, S. Y. Ng, and B. Chaban, “Flagellation and chemotaxis,” in Archaea: Molecular and Cellular Biology, R. Cavicchioli, Ed., pp. 385–410, ASM Press, Washington, DC, USA, 2007. View at Google Scholar
  45. K. F. Jarrell, D. P. Bayley, and A. S. Kostyukova, “The archaeal flagellum: a unique motility structure,” Journal of Bacteriology, vol. 178, no. 17, pp. 5057–5064, 1996. View at Google Scholar · View at Scopus
  46. S. Y. M. Ng, B. Chaban, and K. F. Jarrell, “Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications,” Journal of Molecular Microbiology and Biotechnology, vol. 11, no. 3-5, pp. 167–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. M. L. Kalmokoff and K. F. Jarrell, “Cloning and sequencing of a multigene family encoding the flagellins of Methanococcus voltae,” Journal of Bacteriology, vol. 173, no. 22, pp. 7113–7125, 1991. View at Google Scholar · View at Scopus
  48. S. L. Bardy and K. F. Jarrell, “FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity,” FEMS Microbiology Letters, vol. 208, no. 1, pp. 53–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. S. L. Bardy, T. Mori, K. Komoriya, S.-I. Aizawa, and K. F. Jarrell, “Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus voltae,” Journal of Bacteriology, vol. 184, no. 19, pp. 5223–5233, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. D. M. Faguy, S. F. Koval, and K. F. Jarrell, “Physical characterization of the flagella and flagellins from Methanospirillum hungatei,” Journal of Bacteriology, vol. 176, no. 24, pp. 7491–7498, 1994. View at Google Scholar · View at Scopus
  51. G. Southam, M. L. Kalmokoff, K. F. Jarrell, S. F. Koval, and T. J. Beveridge, “Isolation, characterization, and cellular insertion of the flagella from two strains of the archaebacterium Methanospirillum hungatei,” Journal of Bacteriology, vol. 172, no. 6, pp. 3221–3228, 1990. View at Google Scholar · View at Scopus
  52. D. Cruden, R. Sparling, and A. J. Markovetz, “Isolation and ultrastructure of the flagella of Methanococcus thermolithotrophicus and Methanospirillum hungatei,” Applied and Environmental Microbiology, vol. 55, no. 6, pp. 1414–1419, 1989. View at Google Scholar · View at Scopus
  53. M. Alam and D. Oesterhelt, “Morphology, function and isolation of halobacterial flagella,” Journal of Molecular Biology, vol. 176, no. 4, pp. 459–475, 1984. View at Google Scholar · View at Scopus
  54. M. Alam and D. Oesterhelt, “Purification, reconstitution and polymorphic transition of halobacterial flagella,” Journal of Molecular Biology, vol. 194, no. 3, pp. 495–499, 1987. View at Google Scholar · View at Scopus
  55. L. Gerl, R. Deutzmann, and M. Sumper, “Halobacterial flagellins are encoded by a multigene family Identification of all five gene products,” FEBS Letters, vol. 244, no. 1, pp. 137–140, 1989. View at Google Scholar · View at Scopus
  56. N. Patenge, A. Berendes, H. Engelhardt, S. C. Schuster, and D. Oesterhelt, “The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum,” Molecular Microbiology, vol. 41, no. 3, pp. 653–663, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. M. G. Pyatibratov, S. N. Beznosov, R. Rachel et al., “Alternative flagellar filament types in the haloarchaeon Haloarcula marismortui,” Canadian Journal of Microbiology, vol. 54, no. 10, pp. 835–844, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Tripepi, S. Imam, and M Pohlschroder, “Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion,” Journal of Bacteriology, vol. 192, no. 12, pp. 3093–3102, 2010. View at Google Scholar
  59. Z. Szabó, M. Sani, M. Groeneveld et al., “Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus,” Journal of Bacteriology, vol. 189, no. 11, pp. 4305–4309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. M. G. Pyatibratov, K. Leonard, V. Y. Tarasov, and O. V. Fedorov, “Two immunologically distinct types of protofilaments can be identified in Natrialba magadii flagella,” FEMS Microbiology Letters, vol. 212, no. 1, pp. 23–27, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Serganova, V. Ksenzenko, A. Serganov et al., “Sequencing of flagellin genes from Natrialba magadii provides new insight into evolutionary aspects of archaeal flagellins,” Journal of Bacteriology, vol. 184, no. 1, pp. 318–322, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Nagahisa, S. Ezaki, S. Fujiwara, T. Imanaka, and M. Takagi, “Sequence and transcriptional studies of five clustered flagellin genes from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1,” FEMS Microbiology Letters, vol. 178, no. 1, pp. 183–190, 1999. View at Publisher · View at Google Scholar · View at Scopus
  63. D. J. Näther, R. Rachel, G. Wanner, and R. Wirth, “Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts,” Journal of Bacteriology, vol. 188, no. 19, pp. 6915–6923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Chaban, S. Y. M. Ng, M. Kanbe et al., “Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis,” Molecular Microbiology, vol. 66, no. 3, pp. 596–609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. A. F. Ellen, B. Zolghadr, A. J. M. Driessen, and S. V. Albers, “Shaping the Archaeal Cell Envelope,” Archaea, vol. 2010, Article ID 608243, 2010. View at Publisher · View at Google Scholar
  66. R. C. H. del Rosario, F. Diener, M. Diener, and D. Oesterhelt, “The steady-state phase distribution of the motor switch complex model of Halobacterium salinarum,” Mathematical Biosciences, vol. 222, no. 2, pp. 117–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Nutsch, D. Oesterhelt, E. D. Gilles, and W. Marwan, “A quantitative model of the switch cycle of an archaeal flagellar motor and its sensory control,” Biophysical Journal, vol. 89, no. 4, pp. 2307–2323, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. W. Marwan, M. Alam, and D. Oesterhelt, “Rotation and switching of the flagellar motor assembly in Halobacterium halobium,” Journal of Bacteriology, vol. 173, no. 6, pp. 1971–1977, 1991. View at Google Scholar · View at Scopus
  69. D. M. Faguy and K. F. Jarrell, “A twisted tale: the origin and evolution of motility and chemotaxis in prokaryotes,” Microbiology, vol. 145, no. 2, pp. 279–281, 1999. View at Google Scholar · View at Scopus
  70. D. F. Blair, “Flagellar movement driven by proton translocation,” FEBS Letters, vol. 545, no. 1, pp. 86–95, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Streif, W. F. Staudinger, W. Marwan, and D. Oesterhelt, “Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP,” Journal of Molecular Biology, vol. 384, no. 1, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. D. E. Bradley, “A function of Pseudomonas aeruginosa PAO polar pili: twitching motility,” Canadian Journal of Microbiology, vol. 26, no. 2, pp. 146–154, 1980. View at Google Scholar · View at Scopus
  73. S. Cohen-Krausz and S. Trachtenberg, “The flagellar filament structure of the extreme acidothermophile Sulfolobus shibatae B12 suggests that archaeabacterial flagella have a unique and common symmetry and design,” Journal of Molecular Biology, vol. 375, no. 4, pp. 1113–1124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Cohen-Krausz and S. Trachtenberg, “The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili,” Journal of Molecular Biology, vol. 321, no. 3, pp. 383–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Trachtenberg and S. Cohen-Krausz, “The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure,” Journal of Molecular Microbiology and Biotechnology, vol. 11, no. 3–5, pp. 208–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. S. L. Bardy and K. F. Jarrell, “Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae,” Molecular Microbiology, vol. 50, no. 4, pp. 1339–1347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. D. P. Bayley and K. F. Jarrell, “Further evidence to suggest that archaeal flagella are related to bacterial type IV pili,” Journal of Molecular Evolution, vol. 46, no. 3, pp. 370–373, 1998. View at Google Scholar · View at Scopus
  78. C. R. Peabody, Y. J. Chung, M.-R. Yen, D. Vidal-Ingigliardi, A. P. Pugsley, and M. H. Saier Jr., “Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella,” Microbiology, vol. 149, no. 11, pp. 3051–3072, 2003. View at Google Scholar · View at Scopus
  79. R. M. Macnab, “How bacteria assemble flagella,” Annual Review of Microbiology, vol. 57, pp. 77–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. K. F. Jarrell, D. P. Bayley, V. Florian, and A. Klein, “Isolation and characterization of insertional mutations in flagellin genes in the archaeon Methanococcus voltae,” Molecular Microbiology, vol. 20, no. 3, pp. 657–666, 1996. View at Google Scholar · View at Scopus
  81. V. Y. Tarasov, M. G. Pyatibratov, S.-L. Tang, M. Dyall-Smith, and O. V. Fedorov, “Role of flagellins from A and B loci in flagella formation of Halobacterium salinarum,” Molecular Microbiology, vol. 35, no. 1, pp. 69–78, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. S. N. Beznosov, M. G. Pyatibratov, and O. V. Fedorov, “On the multicomponent nature of Halobacterium salinarum flagella,” Microbiology, vol. 76, no. 4, pp. 435–441, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. S.-V. Albers and A. J. M. Driessen, “Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus solfataricus,” Microbiology, vol. 151, no. 3, pp. 763–773, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. N. A. Thomas and K. F. Jarrell, “Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins,” Journal of Bacteriology, vol. 183, no. 24, pp. 7154–7164, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. N. A. Thomas, S. Mueller, A. Klein, and K. F. Jarrell, “Mutants in flaI and flaJ of the archaeon Methanococcus voltae are deficient in flagellum assembly,” Molecular Microbiology, vol. 46, no. 3, pp. 879–887, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Schlesner, A. Miller, S. Streif et al., “Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus,” BMC Microbiology, vol. 9, article 56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. S. M. Logan, “Flagellar glycosylation—a new component of the motility repertoire?” Microbiology, vol. 152, no. 5, pp. 1249–1262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Kelly, S. M. Logan, K. F. Jarrell, D. J. VanDyke, and E. Vinogradov, “A novel N-linked flagellar glycan from Methanococcus maripaludis,” Carbohydrate Research, vol. 344, no. 5, pp. 648–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. F. Wieland, G. Paul, and M. Sumper, “Halobacterial flagellins are sulfated glycoproteins,” The Journal of Biological Chemistry, vol. 260, no. 28, pp. 15180–15185, 1985. View at Google Scholar · View at Scopus
  90. R. M. Harshey, “Bacterial motility on a surface: many ways to a common goal,” Annual Review of Microbiology, vol. 57, pp. 249–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. J. K. Anderson, T. G. Smith, and T. R. Hoover, “Sense and sensibility: flagellum-mediated gene regulation,” Trends in Microbiology, vol. 18, no. 1, pp. 30–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. Q. Wang, A. Suzuki, S. Mariconda, S. Porwollik, and R. M. Harshey, “Sensing wetness: a new role for the bacterial flagellum,” EMBO Journal, vol. 24, no. 11, pp. 2034–2042, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Schopf, G. Wanner, R. Rachel, and R. Wirth, “An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri,” Archives of Microbiology, vol. 190, no. 3, pp. 371–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Zolghadr, A. Kling, A. Koerdt, A. J.M. Driessen, R. Rachel, and S.-V. Albers, “Appendage-mediated surface adherence of Sulfolobus solfataricus,” Journal of Bacteriology, vol. 192, no. 1, pp. 104–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Paetzel, A. Karla, N. C. J. Strynadka, and R. E. Dalbey, “Signal peptidases,” Chemical Reviews, vol. 102, no. 12, pp. 4549–4580, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Y. M. Ng and K. F. Jarrell, “Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae,” Journal of Bacteriology, vol. 185, no. 20, pp. 5936–5942, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. S. L. Bardy, S. Y. M. Ng, D. S. Carnegie, and K. F. Jarrell, “Site-directed mutagenesis analysis of amino acids critical for activity of the type I signal peptidase of the archaeon Methanococcus voltae,” Journal of Bacteriology, vol. 187, no. 3, pp. 1188–1191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. E. Fink-Lavi and J. Eichler, “Identification of residues essential for the catalytic activity of Sec11b, one of the two type I signal peptidases of Haloferax volcanii,” FEMS Microbiology Letters, vol. 278, no. 2, pp. 257–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. W. R. Tschantz, M. Sung, V. M. Delgado-Partin, and R. E. Dalbey, “A serine and a lysine residue implicated in the catalytic mechanism of the Escherichia coli leader peptidase,” The Journal of Biological Chemistry, vol. 268, no. 36, pp. 27349–27354, 1993. View at Google Scholar · View at Scopus
  100. M. Paetzel, R. E. Dalbey, and N. C. J. Strynadka, “Crystal structure of a bacterial signal peptidase apoenzyme. Implications for signal peptide binding and the Ser-Lys dyad mechanism,” The Journal of Biological Chemistry, vol. 277, no. 11, pp. 9512–9519, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. R. E. Dalbey, M. O. Lively, S. Bron, and J. M. van Dijl, “The chemistry and enzymology of the type I signal peptidases,” Protein Science, vol. 6, no. 6, pp. 1129–1138, 1997. View at Google Scholar · View at Scopus
  102. C. VanValkenburgh, X. Chen, C. Mullins, H. Fang, and N. Green, “The catalytic mechanism of endoplasmic reticulum signal peptidase appears to be distinct from most eubacterial signal peptidases,” The Journal of Biological Chemistry, vol. 274, no. 17, pp. 11519–11525, 1999. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Fine, V. Irihimovitch, I. Dahan, Z. Konrad, and J. Eichler, “Cloning, expression, and purification of functional Sec11a and Sec11b, type I signal peptidases of the archaeon Haloferax volcanii,” Journal of Bacteriology, vol. 188, no. 5, pp. 1911–1919, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. S.-V. Albers, Z. Szabó, and A. J. M. Driessen, “Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity,” Journal of Bacteriology, vol. 185, no. 13, pp. 3918–3925, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. Z. Szabó, A. O. Stahl, S.-V. Albers, J. C. Kissinger, A. J. M. Driessen, and M. Pohlschröder, “Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases,” Journal of Bacteriology, vol. 189, no. 3, pp. 772–778, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. N. A. Thomas, E. D. Chao, and K. F. Jarrell, “Identification of amino acids in the leader peptide of Methanococcus voltae preflagellin that are important in posttranslational processing,” Archives of Microbiology, vol. 175, no. 4, pp. 263–269, 2001. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Y. M. Ng, D. J. VanDyke, B. Chaban et al., “Different minimal signal peptide lengths recognized by the archaeal prepilin-like peptidases FlaK and PibD,” Journal of Bacteriology, vol. 191, no. 21, pp. 6732–6740, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. Z. Szabó, S.-V. Albers, and A. J. M. Driessen, “Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus,” Journal of Bacteriology, vol. 188, no. 4, pp. 1437–1443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. S.-V. Albers and M. Pohlschröder, “Diversity of archaeal type IV pilin-like structures,” Extremophiles, vol. 13, pp. 403–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. D. W. Müller, C. Meyer, S. Gürster et al., “The Iho670 fibers of Ignicoccus hospitalis: a new type of archaeal cell surface appendage,” Journal of Bacteriology, vol. 191, no. 20, pp. 6465–6468, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. M. A. Koncewicz, “Glycoproteins in the cell envelope of Halobacterium halobium,” Biochemical Journal, vol. 128, no. 4, p. 124, 1972. View at Google Scholar · View at Scopus
  112. M. F. Mescher, J. L. Strominger, and S. W. Watson, “Protein and carbohydrate composition of the cell envelope of Halobacterium salinarium,” Journal of Bacteriology, vol. 120, no. 2, pp. 945–954, 1974. View at Google Scholar · View at Scopus
  113. J. Eichler and M. W. W. Adams, “Posttranslational protein modification in Archaea,” Microbiology and Molecular Biology Reviews, vol. 69, no. 3, pp. 393–425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Abu-Qarn and J. Eichler, “Protein N-glycosylation in Archaea: defining Haloferax volcanii genes involved in S-layer glycoprotein glycosylation,” Molecular Microbiology, vol. 61, no. 2, pp. 511–525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. B. Chaban, S. Voisin, J. Kelly, S. M. Logan, and K. F. Jarrell, “Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea,” Molecular Microbiology, vol. 61, no. 1, pp. 259–268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. D. J. Vandyke, J. Wu, S. M. Logan et al., “Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis,” Molecular Microbiology, vol. 72, no. 3, pp. 633–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. D. J. VanDyke, J. Wu, S. Y. M. Ng et al., “Identification of a putative acetyltransferase gene, MMP0350, which affects proper assembly of both flagella and pili in the archaeon Methanococcus maripaludis,” Journal of Bacteriology, vol. 190, no. 15, pp. 5300–5307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. C. M. Szymanski and B. W. Wren, “Protein glycosylation in bacterial mucosal pathogens,” Nature Reviews Microbiology, vol. 3, no. 3, pp. 225–237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Abu-Qarn, A. Giordano, F. Battaglia et al., “Identification of AglE, a second glycosyltransferase involved in N glycosylation of the Haloferax volcanii S-layer glycoprotein,” Journal of Bacteriology, vol. 190, no. 9, pp. 3140–3146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Yurist-Doutsch, M. Abu-Qarn, F. Battaglia et al., “AglF, aglG and aglI, novel members of a gene island involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein,” Molecular Microbiology, vol. 69, no. 5, pp. 1234–1245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Yurist-Doutsch and J. Eichler, “Manual annotation, transcriptional analysis, and protein expression studies reveal novel genes in the agl cluster responsible for N glycosylation in the halophilic archaeon Haloferax volcanii,” Journal of Bacteriology, vol. 191, no. 9, pp. 3068–3075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Yurist-Doutsch, H. Magidovich, V. V. Ventura, P. G. Hitchen, A. Dell, and J. Eichler, “N-glycosylation in Archaea: on the coordinated actions of Haloferax volcanii AglF and AglM,” Molecular Microbiology, vol. 75, no. 4, pp. 1047–1058, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Abu-Qarn, S. Yurist-Doutsch, A. Giordano et al., “Haloferax volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer,” Journal of Molecular Biology, vol. 374, no. 5, pp. 1224–1236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. H. Magidovich, S. Yurist-Doutsch, Z. Konrad et al., “AglP is a S-adenosyl-L-methionine-dependent methyltransferase that participates in the N-glycosylation pathway of Haloferax volcanii,” Molecular Microbiology, vol. 76, no. 1, pp. 190–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. B. Chaban, S. M. Logan, J. F. Kelly, and K. F. Jarrell, “AglC and AglK are involved in biosynthesis and attachment of diacetylated glucuronic acid to the N-glycan in Methanococcus voltae,” Journal of Bacteriology, vol. 91, no. 1, pp. 187–195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. H. Shams-Eldin, B. Chaban, S. Niehus, R. T. Schwarz, and K. F. Jarrell, “Identification of the archaeal alg7 gene homolog (encoding N-acetylglucosamine-1-phosphate transferase) of the N-linked glycosylation system by cross-domain complementation in Saccharomyces cerevisiae,” Journal of Bacteriology, vol. 190, no. 6, pp. 2217–2220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. B. C. Moore and J. A. Leigh, “Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease,” Journal of Bacteriology, vol. 187, no. 3, pp. 972–979, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. S. C. Namboori and D. E. Graham, “Acetamido sugar biosynthesis in the Euryarchaea,” Journal of Bacteriology, vol. 190, no. 8, pp. 2987–2996, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Sumper, E. Berg, R. Mengele, and I. Strobel, “Primary structure and glycosylation of the S-layer protein of Haloferax volcanii,” Journal of Bacteriology, vol. 172, no. 12, pp. 7111–7118, 1990. View at Google Scholar · View at Scopus
  130. A. Kikuchi, H. Sagami, and K. Ogura, “Evidence for covalent attachment of diphytanylglyceryl phosphate to the cell-surface glycoprotein of Halobacterium halobium,” The Journal of Biological Chemistry, vol. 274, no. 25, pp. 18011–18016, 1999. View at Publisher · View at Google Scholar · View at Scopus
  131. H. Wakai, S. Nakamura, H. Kawasaki et al., “Cloning and sequencing of the gene encoding the cell surface glycoprotein of Haloarcula japonica strain TR-1,” Extremophiles, vol. 1, no. 1, pp. 29–35, 1997. View at Google Scholar · View at Scopus
  132. Z. Konrad and J. Eichler, “Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation,” Biochemical Journal, vol. 366, no. 3, pp. 959–964, 2002. View at Publisher · View at Google Scholar · View at Scopus
  133. J. Eichler, “Post-translational modification of the S-layer glycoprotein occurs following translocation across the plasma membrane of the haloarchaeon Haloferax volcanii,” European Journal of Biochemistry, vol. 268, no. 15, pp. 4366–4373, 2001. View at Publisher · View at Google Scholar · View at Scopus
  134. D. P. Bayley, M. L. Kalmokoff, and K. F. Jarrell, “Effect of bacitracin on flagellar assembly and presumed glycosylation of the flagellins of Methanococcus deltae,” Archives of Microbiology, vol. 160, no. 3, pp. 179–185, 1993. View at Google Scholar · View at Scopus
  135. M. Falb, M. Aivaliotis, C. Garcia-Rizo et al., “Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey,” Journal of Molecular Biology, vol. 362, no. 5, pp. 915–924, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Aivaliotis, K. Gevaert, M. Falb et al., “Large-scale identification of N-terminal peptides in the halophilic Archaea Halobacterium salinarum and Natronomonas pharaonis,” Journal of Proteome Research, vol. 6, no. 6, pp. 2195–2204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. N. F. W. Saunders, C. Ng, M. Raftery, M. Guilhaus, A. Goodchild, and R. Cavicchioli, “Proteomic and computational analysis of secreted proteins with type I signal peptides from the antarctic archaeon Methanococcoides burtonii,” Journal of Proteome Research, vol. 5, no. 9, pp. 2457–2464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. P. A. Kirkland, M. A. Gil, I. M. Karadzic, and J. A. Maupin-Furlow, “Genetic and proteomic analyses of a proteasome-activating nucleotidase a mutant of the haloarchaeon Haloferax volcanii,” Journal of Bacteriology, vol. 190, no. 1, pp. 193–205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. D. R. Francoleon, P. Boontheung, Y. Yang et al., “S-layer, surface-accessible, and concanavalin a binding proteins of Methanosarcina acetivorans and Methanosarcina mazei,” Journal of Proteome Research, vol. 8, no. 4, pp. 1972–1982, 2009. View at Publisher · View at Google Scholar · View at Scopus