Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2012, Article ID 384919, 8 pages
http://dx.doi.org/10.1155/2012/384919
Review Article

Lipids of Archaeal Viruses

Department of Biosciences and Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 5, 00014 Helsinki, Finland

Received 9 July 2012; Accepted 13 August 2012

Academic Editor: Angela Corcelli

Copyright © 2012 Elina Roine and Dennis H. Bamford. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Q. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz, Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses, Elsevier, Oxford, UK, 2011.
  2. J. Eichler and M. W. W. Adams, “Posttranslational protein modification in Archaea,” Microbiology and Molecular Biology Reviews, vol. 69, no. 3, pp. 393–425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. D. E. Hruby and C. A. Franke, “Viral acylproteins: greasing the wheels of assembly,” Trends in Microbiology, vol. 1, no. 1, pp. 20–25, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. M. M. Poranen, R. Daugelavičius, and D. H. Bamford, “Common principles in viral entry,” Annual Review of Microbiology, vol. 56, pp. 521–538, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. A. E. Smith and A. Helenius, “How viruses enter animal cells,” Science, vol. 304, no. 5668, pp. 237–242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. H. M. Oksanen, M. M. Poranen, and D. H. Bamford, “Bacteriophages: lipid-containing,” in Encyclopedia of Life Sciences (ELS), John Wiley & Sons, Chichester, UK, 2010. View at Google Scholar
  7. H. W. Ackermann, “5500 Phages examined in the electron microscope,” Archives of Virology, vol. 152, no. 2, pp. 227–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. B. L. Soloff, T. A. Rado, B. E. Henry II, and J. H. Bates, “Biochemical and morphological characterization of mycobacteriophage R1,” Journal of Virology, vol. 25, no. 1, pp. 253–262, 1978. View at Google Scholar · View at Scopus
  9. M. L. Gope and K. P. Gopinathan, “Presence of lipids in mycobacteriophage I3,” Journal of General Virology, vol. 59, no. 1, pp. 131–138, 1982. View at Google Scholar · View at Scopus
  10. M. K. Pietilä, N. S. Atanasova, V. Manole et al., “Virion architecture unifies globally distributed pleolipoviruses infecting halophilic Archaea,” Journal of Virology, vol. 86, no. 9, pp. 5067–5079, 2012. View at Publisher · View at Google Scholar
  11. J. M. Claverie, C. Abergel, and H. Ogata, “Mimivirus,” in Current Topics in Microbiology and Immunology, J. L. Van Etten, Ed., vol. 328, pp. 89–121, 2009. View at Google Scholar
  12. W. H. Wilson, J. L. Van Etten, and M. J. Allen, “The Phycodnaviridae: the story how tiny giants rule the world,” in Current Topics in Microbiology and Immunology, J. L. Van Etten, Ed., pp. 1–42, 2009. View at Google Scholar
  13. G. J. Brewer, “Control of membrane morphogenesis in bacteriophage,” International Review of Cytology, vol. 68, pp. 53–96, 1980. View at Google Scholar · View at Scopus
  14. S. Laurinavičius, Phospholipids of lipid-containing bacteriophages and their transbilayer distribution. [Ph.D. thesis], University of Helsinki, Helsinki, Finland, 2008.
  15. H. Garoff, R. Hewson, and D. J. E. Opstelten, “Virus maturation by budding,” Microbiology and Molecular Biology Reviews, vol. 62, no. 4, pp. 1171–1190, 1998. View at Google Scholar · View at Scopus
  16. L. Mindich, D. Bamford, T. McGraw, and G. Mackenzie, “Assembly of bacteriophage PRD1: particle formation with wild-type and mutant viruses,” Journal of Virology, vol. 44, no. 3, pp. 1021–1030, 1982. View at Google Scholar · View at Scopus
  17. D. H. Bamford, J. Caldentey, and J. K. Bamford, “Bacteriophage PRD1: a broad host range dsDNA tectivirus with an internal membrane,” Advances in Virus Research, vol. 45, pp. 281–319, 1995. View at Google Scholar · View at Scopus
  18. P. S. Rydman, J. K. H. Bamford, and D. H. Bamford, “A minor capsid protein P30 is essential for bacteriophage PRD1 capsid assembly,” Journal of Molecular Biology, vol. 313, no. 4, pp. 785–795, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. A. K. Vidaver, R. K. Koski, and J. L. Van Etten, “Bacteriophage ϕ6: a lipid containing virus of Pseudomonas phaseolicola,” Journal of Virology, vol. 11, no. 5, pp. 799–805, 1973. View at Google Scholar · View at Scopus
  20. L. Mindich and J. Lehman, “Cell wall lysin as a component of the bacteriophage ϕ6 virion,” Journal of Virology, vol. 30, no. 2, pp. 489–496, 1979. View at Google Scholar · View at Scopus
  21. K. H. Lundström, D. H. Bamford, E. T. Palva, and K. Lounatmaa, “Lipid-containing bacteriophage PR4: structure and life cycle,” Journal of General Virology, vol. 43, no. 3, pp. 583–592, 1979. View at Google Scholar · View at Scopus
  22. D. Bamford and L. Mindich, “Structure of the lipid-containing bacteriophage PRD1: disruption of wild-type and nonsense mutant phage particles with guanidine hydrochloride,” Journal of Virology, vol. 44, no. 3, pp. 1031–1038, 1982. View at Google Scholar · View at Scopus
  23. A. M. Grahn, R. Daugelavičius, and D. H. Bamford, “Sequential model of phage PRD1 DNA delivery: active involvement of the viral membrane,” Molecular Microbiology, vol. 46, no. 5, pp. 1199–1209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. H. M. Kivelä, R. Daugelavičius, R. H. Hankkio, J. K. H. Bamford, and D. H. Bamford, “Penetration of membrane-containing double-stranded-DNA bacteriophage PM2 into Pseudoalteromonas hosts,” Journal of Bacteriology, vol. 186, no. 16, pp. 5342–5354, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Khayat, L. Tang, E. T. Larson, C. M. Lawrence, M. Young, and J. E. Johnson, “Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 52, pp. 18944–18949, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. N. G. Abrescia, J. M. Grimes, H. M. Kivelä et al., “Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2,” Molecular cell, vol. 31, no. 5, pp. 749–761, 2008. View at Google Scholar · View at Scopus
  27. S. T. Jaatinen, L. J. Happonen, P. Laurinmäki, S. J. Butcher, and D. H. Bamford, “Biochemical and structural characterisation of membrane-containing icosahedral dsDNA bacteriophages infecting thermophilic Thermus thermophilus,” Virology, vol. 379, no. 1, pp. 10–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. T. Jäälinoja, E. Roine, P. Laurinmäki, H. M. Kivelä, D. H. Bamford, and S. J. Butcher, “Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 23, pp. 8008–8013, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Cvirkaitė-Krupovič, M. Krupovič, R. Daugelavičius, and D. H. Bamford, “Calcium ion-dependent entry of the membrane-containing bacteriophage PM2 into its Pseudoalteromonas host,” Virology, vol. 405, no. 1, pp. 120–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Khayat, C. Y. Fu, A. C. Ortmann, M. J. Young, and J. E. Johnson, “The architecture and chemical stability of the archaeal Sulfolobus turreted icosahedral virus,” Journal of Virology, vol. 84, no. 18, pp. 9575–9583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Y. Fu, K. Wang, L. Gan et al., “In vivo assembly of an archaeal virus studied with whole-cell electron cryotomography,” Structure, vol. 18, no. 12, pp. 1579–1586, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Kukkaro and D. H. Bamford, “Virus-host interactions in environments with a wide range of ionic strengths,” Environmental Microbiology Reports, vol. 1, no. 1, pp. 71–77, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Porter, P. Kukkaro, J. K. H. Bamford et al., “SH1: a novel, spherical halovirus isolated from an Australian hypersaline lake,” Virology, vol. 335, no. 1, pp. 22–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. K. Pietilä, E. Roine, L. Paulin, N. Kalkkinen, and D. H. Bamford, “An ssDNA virus infecting Archaea: a new lineage of viruses with a membrane envelope,” Molecular Microbiology, vol. 72, no. 2, pp. 307–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. L. Dyall-Smith, “Genus Salterprovirus,” in Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses, A. M. Q. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz, Eds., pp. 183–186, ElsevierOxford, UK, 2011. View at Google Scholar
  36. E. Roine, P. Kukkaro, L. Paulin et al., “New, closely related haloarchaeal viral elements with different nucleic acid types,” Journal of Virology, vol. 84, no. 7, pp. 3682–3689, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. P. Prat, J. N. Lamy, and J. D. Weill, “Staining of lipoproteins after electrophoresis in polyacrylamide gel,” Bulletin de la Société de Chimie Biologique, vol. 51, no. 9, article 1367, 1969. View at Google Scholar · View at Scopus
  38. A. Corcelli and S. Lobasso, “Characterization of lipids of halophilic Archaea,” in Methods in Microbiology: Extremophiles, F. A. Rainey and A. Oren, Eds., vol. 35, pp. 585–613, Elsevier, New York, NY, USA, 2006. View at Google Scholar
  39. M. S. da Costa, M. F. Nobre, and R. Wait, “Analysis of lipids from extremophilic bacteria,” in Methods in Microbiology: Extremophiles, F. A. Rainey and A. Oren, Eds., vol. 35, pp. 127–159, Elsevier, New York, NY, USA, 2006. View at Google Scholar
  40. D. H. Bamford, J. J. Ravantti, G. Rönnholm et al., “Constituents of SH1, a novel lipid-containing virus infecting the halophilic euryarchaeon Haloarcula hispanica,” Journal of Virology, vol. 79, no. 14, pp. 9097–9107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. M. K. Pietilä, S. Laurinavičius, J. Sund, E. Roine, and D. H. Bamford, “The single-stranded DNA genome of novel archaeal virus Halorubrum pleomorphic virus 1 is enclosed in the envelope decorated with glycoprotein spikes,” Journal of Virology, vol. 84, no. 2, pp. 788–798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. H. M. Kivelä, E. Roine, P. Kukkaro, S. Laurinavičius, P. Somerharju, and D. H. Bamford, “Quantitative dissociation of archaeal virus SH1 reveals distinct capsid proteins and a lipid core,” Virology, vol. 356, no. 1-2, pp. 4–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Kates, “The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria,” Progress in the Chemistry of Fats and Other Lipids, vol. 15, no. 4, pp. 301–342, 1977. View at Google Scholar · View at Scopus
  44. G. D. Sprott, “Structures of archaebacterial membrane lipids,” Journal of Bioenergetics and Biomembranes, vol. 24, no. 6, pp. 555–566, 1992. View at Publisher · View at Google Scholar · View at Scopus
  45. S. V. Albers, W. N. Konings, and A. J. M. Driessen, “Membranes of thermophiles and other extremophiles,” in Methods in Microbiology: Extremophiles, F. A. Rainey and A. Oren, Eds., vol. 35, pp. 161–171, Elsevier, New York, NY, USA, 2006. View at Google Scholar
  46. Y. Boucher, “Lipids: biosynthesis, function, and evolution,” in Archaea: Molecular and Cellular Biology, R. Cavicchioli, Ed., pp. 341–353, ASM Press, Washington, DC, USA, 2007. View at Google Scholar
  47. A. Gliozzi, R. Rolandi, M. de Rosa, and A. Gambacorta, “Monolayer black membranes from bipolar lipids of archaebacteria and their temperature-induced structural changes,” The Journal of Membrane Biology, vol. 75, no. 1, pp. 45–56, 1983. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Nicolaus, A. Trincone, E. Esposito, M. R. Vaccaro, A. Gambacorta, and M. de Rosa, “Calditol tetraether lipids of the archaebacterium Sulfolobus solfataricus. Biosynthetic studies,” Biochemical Journal, vol. 266, no. 3, pp. 785–791, 1990. View at Google Scholar · View at Scopus
  49. A. Corcelli, “The cardiolipin analogues of Archaea,” Biochimica et Biophysica Acta, vol. 1788, no. 10, pp. 2101–2106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Häring, X. Peng, K. Brügger et al., “Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae,” Virology, vol. 323, no. 2, pp. 233–242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Rettenberger, Das Virus TTV1 des extreme thermophilen Schwefel-Archaebacteriums Thermoproteus tenax: Zusammensetzung und Structur [Ph.D. thesis], Ludwig-Maximillians-Universität, Munich, Germany, 1990.
  52. D. Janekovic, S. Wunderl, and I. Holz, “TTV1, TTV2 and TTV3, a family of viruses of the extremely thermophilic, anaerobic, sulfur reducing archaebacterium Thermoproteus tenax,” Molecular and General Genetics, vol. 192, no. 1-2, pp. 39–45, 1983. View at Google Scholar · View at Scopus
  53. M. Bettstetter, X. Peng, R. A. Garrett, and D. Prangishvili, “AFV1, a novel virus infecting hyperthermophilic Archaea of the genus Acidianus,” Virology, vol. 315, no. 1, pp. 68–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. H. P. Arnold, W. Zillig, U. Ziese et al., “A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus,” Virology, vol. 267, no. 2, pp. 252–266, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Bath, T. Cukalac, K. Porter, and M. L. Dyall-Smith, “His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus,” Virology, vol. 350, no. 1, pp. 228–239, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. N. S. Atanasova, E. Roine, A. Oren, D. H. Bamford, and H. M. Oksanen, “Global network of specific virus-host interactions in hypersaline environments,” Environmental Microbiology, vol. 14, no. 2, pp. 426–440, 2012. View at Publisher · View at Google Scholar
  57. G. Rice, L. Tang, K. Stedman et al., “The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 20, pp. 7716–7720, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. L. J. Happonen, P. Redder, X. Peng, L. J. Reigstad, D. Prangishvili, and S. J. Butcher, “Familial relationships in hyperthermo- and acidophilic archaeal viruses,” Journal of Virology, vol. 84, no. 9, pp. 4747–4754, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. X. Xiang, L. Chen, X. Huang, Y. Luo, Q. She, and L. Huang, “Sulfolobus tengchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features,” Journal of Virology, vol. 79, no. 14, pp. 8677–8686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Sagami, A. Kikuchi, K. Ogura, K. Fushihara, and T. Nishino, “Novel isoprenoid modified proteins in Halobacteria,” Biochemical and Biophysical Research Communications, vol. 203, no. 2, pp. 972–978, 1994. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Sagami, A. Kikuchi, and K. Ogura, “A novel type of protein modification by isoprenoid-derived materials. Diphytanylglycerylated proteins in Halobacteria,” The Journal of Biological Chemistry, vol. 270, no. 25, pp. 14851–14854, 1995. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. Konrad and J. Eichler, “Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation,” Biochemical Journal, vol. 366, no. 3, pp. 959–964, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Häring, R. Rachel, X. Peng, R. A. Garrett, and D. Prangishvili, “Viral diversity in hot springs of Pozzuoli, Italy, and characterization of a unique archaeal virus, Acidianus bottle-shaped virus, from a new family, the Ampullaviridae,” Journal of Virology, vol. 79, no. 15, pp. 9904–9911, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Paula, A. G. Volkov, A. N. Van Hoek, T. H. Haines, and D. W. Deamer, “Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness,” Biophysical Journal, vol. 70, no. 1, pp. 339–348, 1996. View at Google Scholar · View at Scopus
  65. Y. Zhai, P. L. Chong, L. J. Taylor et al., “Physical properties of archaeal tetraether lipid membranes as revealed by differential scanning and pressure perturbation calorimetry, molecular acoustics, and neutron reflectometry: effects of pressure and cell growth temperature,” Langmuir, vol. 28, no. 11, pp. 5211–5217, 2012. View at Google Scholar
  66. W. D. Reiter, W. Zillig, and P. Palm, “Archaebacterial viruses,” Advances in Virus Research, vol. 34, pp. 143–188, 1988. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Prangishvili, “Family Fuselloviridae,” in Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses, A. M. Q. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz, Eds., pp. 183–186, Elsevier, Oxford, UK, 2011. View at Google Scholar
  68. D. Prangishvili, “Family Lipothrixviridae,” in Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses, A. M. Q. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz, Eds., pp. 211–221, Elsevier, Oxford, UK, 2011. View at Google Scholar
  69. M. Häring, G. Vestergaard, K. Brügger, R. Rachel, R. A. Garrett, and D. Prangishvili, “Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures,” Journal of Bacteriology, vol. 187, no. 11, pp. 3855–3858, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. W. S. A. Maaty, A. C. Ortmann, M. Dlakić et al., “Characterization of the archaeal thermophile Sulfolobus turreted icosahedral virus validates an evolutionary link among double-stranded DNA viruses from all domains of life,” Journal of Virology, vol. 80, no. 15, pp. 7625–7635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Y. Fu and J. E. Johnson, “Structure and cell biology of archaeal virus STIV,” Current Opinion in Virology, vol. 2, no. 2, pp. 122–127, 2012. View at Publisher · View at Google Scholar
  72. S. T. Jaakkola, R. K. Penttinen, S. T. Vilén et al., “Closely related archaeal Haloarcula hispanica icosahedral viruses HHIV-2 and SH1 have nonhomologous genes encoding host recognition functions,” Journal of Virology, vol. 86, no. 9, pp. 4734–4742, 2012. View at Google Scholar
  73. E. Roine and H. M. Oksanen, “Viruses from the hypersaline environment,” in Halophiles and Hypersaline Environments: Current Research and Future Trends, Ventosa, A. Oren, and Y. Ma, Eds., pp. 153–172, Springer, Berlin, Germany, 2011. View at Google Scholar
  74. J. J. B. Cockburn, N. G. A. Abrescia, J. M. Grimes et al., “Membrane structure and interactions with protein and DNA in bacteriophage PRD1,” Nature, vol. 432, no. 7013, pp. 122–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Senčilo, L. Paulin, S. Kellner, M. Helm, and E. Roine, “Related haloarchaeal pleomorphic viruses contain different genome types,” Nucleic Acids Research, vol. 40, no. 12, pp. 5523–5534, 2012. View at Publisher · View at Google Scholar
  76. L. Kandiba, O. Aitio, J. Helin et al., “Diversity in prokaryotic glycosylation: an archaeal-derived N-linked glycan contains legionaminic acid,” Molecular Microbiology, vol. 84, no. 3, pp. 578–593, 2012. View at Publisher · View at Google Scholar
  77. R. Montalvo-Rodríguez, R. H. Vreeland, A. Oren, M. Kessel, C. Betancourt, and J. López-Garriga, “Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico,” International Journal of Systematic Bacteriology, vol. 48, no. 4, pp. 1305–1312, 1998. View at Google Scholar · View at Scopus
  78. I. R. Cooke and M. Deserno, “Coupling between lipid shape and membrane curvature,” Biophysical Journal, vol. 91, no. 2, pp. 487–495, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Adamian, H. Naveed, and J. Liang, “Lipid-binding surfaces of membrane proteins: evidence from evolutionary and structural analysis,” Biochimica et Biophysica Acta, vol. 1808, no. 4, pp. 1092–1102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. N. G. A. Abrescia, J. J. B. Cockburn, J. M. Grimes et al., “Insights into assembly from structural analysis of bacteriophage PRD1,” Nature, vol. 432, no. 7013, pp. 68–74, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. B. Tenchov, E. M. Vescio, G. D. Sprott, M. L. Zeidel, and J. C. Mathai, “Salt tolerance of archaeal extremely halophilic lipid membranes,” The Journal of Biological Chemistry, vol. 281, no. 15, pp. 10016–10023, 2006. View at Publisher · View at Google Scholar · View at Scopus