Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2012, Article ID 596846, 11 pages
http://dx.doi.org/10.1155/2012/596846
Review Article

Archaea in Symbioses

1Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
2Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
3Courant Centre Geobiology, Georg-August-Universität Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany

Received 5 September 2012; Accepted 19 November 2012

Academic Editor: Martin Krüger

Copyright © 2012 Christoph Wrede et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. B. West, W. H. Woodruff, and J. H. Brown, “Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, supplement 1, pp. 2473–2478, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Klitgord and D. Segrè, “Environments that induce synthetic microbial ecosystems,” PLoS Computational Biology, vol. 6, no. 11, Article ID e1001002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Dubilier, C. Bergin, and C. Lott, “Symbiotic diversity in marine animals: the art of harnessing chemosynthesis,” Nature Reviews Microbiology, vol. 6, no. 10, pp. 725–740, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. G. Thanassi, J. B. Bliska, and P. J. Christie, “Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function,” FEMS Microbiology Reviews, vol. 36, no. 6, pp. 1046–1082, 2012. View at Publisher · View at Google Scholar
  5. H. P. Horz and G. Conrads, “The discussion goes on: what is the role of Euryarchaeota in humans?” Archaea, vol. 2010, Article ID 967271, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Moissl-Eichinger and H. Huber, “Archaeal symbionts and parasites,” Current Opinion in Microbiology, vol. 14, no. 3, pp. 364–370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. N. Reeve and C. Schleper, “Archaea: very diverse, often different but never bad?” Current Opinion in Microbiology, vol. 14, no. 3, pp. 271–273, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Koerdt, S. Jachlewski, A. Ghosh, J. Wingender, B. Siebers, and S. V. Albers, “Complementation of Sulfolobus solfataricus PBL2025 with an α-mannosidase: effects on surface attachment and biofilm formation,” Extremophiles, vol. 16, no. 1, pp. 115–125, 2011. View at Google Scholar
  9. C. Moissl, C. Rudolph, and R. Huber, “Natural communities of novel archaea and bacteria with a string-of-pearls-like morphology: molecular analysis of the bacterial partners,” Applied and Environmental Microbiology, vol. 68, no. 2, pp. 933–937, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Moissl, R. Rachel, A. Briegel, H. Engelhardt, and R. Huber, “The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks,” Molecular Microbiology, vol. 56, no. 2, pp. 361–370, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Rudolph, C. Moissl, R. Henneberger, and R. Huber, “Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs,” FEMS Microbiology Ecology, vol. 50, no. 1, pp. 1–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Nickell, R. Hegerl, W. Baumeister, and R. Rachel, “Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography,” Journal of Structural Biology, vol. 141, no. 1, pp. 34–42, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. B. J. Baker, L. R. Comolli, G. J. Dick et al., “Enigmatic, ultrasmall, uncultivated Archaea,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 19, pp. 8806–8811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. V. Albers, Z. Szabó, and A. J. M. Driessen, “Protein secretion in the Archaea: multiple paths towards a unique cell surface,” Nature Reviews Microbiology, vol. 4, no. 7, pp. 537–547, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Pohlschroder, A. Ghosh, M. Tripepi, and S. V. Albers, “Archaeal type IV pilus-like structures-evolutionarily conserved prokaryotic surface organelles,” Current Opinion in Microbiology, vol. 14, no. 3, pp. 357–363, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. J. Näther, R. Rachel, G. Wanner, and R. Wirth, “Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts,” Journal of Bacteriology, vol. 188, no. 19, pp. 6915–6923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Fröls, M. Ajon, M. Wagner et al., “UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation,” Molecular Microbiology, vol. 70, no. 4, pp. 938–952, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Koerdt, J. Gödeke, J. Berger, K. M. Thormann, and S. V. Albers, “Crenarchaeal biofilm formation under extreme conditions,” PLoS ONE, vol. 5, no. 11, Article ID e14104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Schopf, G. Wanner, R. Rachel, and R. Wirth, “An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri,” Archives of Microbiology, vol. 190, no. 3, pp. 371–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Tripepi, S. Imam, and M. Pohlschröder, “Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion,” Journal of Bacteriology, vol. 192, no. 12, pp. 3093–3102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. R. Leadbetter and J. A. Breznak, “Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes,” Applied and Environmental Microbiology, vol. 62, no. 10, pp. 3620–3631, 1996. View at Google Scholar · View at Scopus
  22. V. B. Tran, S. M. J. Fleiszig, D. J. Evans, and C. J. Radke, “Dynamics of flagellum-and pilus-mediated association of Pseudomonas aeruginosa with contact lens surfaces,” Applied and Environmental Microbiology, vol. 77, no. 11, pp. 3644–3652, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. K. Zgair and S. Chhibber, “Adhesion of Stenotrophomonas maltophilia to mouse tracheal mucus is mediated through flagella,” Journal of Medical Microbiology, vol. 60, no. 7, pp. 1032–1037, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. U. Gophna, E. Z. Ron, and D. Graur, “Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events,” Gene, vol. 312, no. 1-2, pp. 151–163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. U. Küper, C. Meyer, V. Müller, R. Rachel, and H. Huber, “Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 3152–3156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Burghardt, D. J. Näther, B. Junglas, H. Huber, and R. Rachel, “The dominating outer membrane protein of the hyperthermophilic Archaeum Ignicoccus hospitalis: a novel pore-forming complex,” Molecular Microbiology, vol. 63, no. 1, pp. 166–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Burghardt, B. Junglas, F. Siedler, R. Wirth, H. Huber, and R. Rachel, “The interaction of Nanoarchaeum equitans with Ignicoccus hospitalis: proteins in the contact site between two cells,” Biochemical Society Transactions, vol. 37, no. 1, pp. 127–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Waters, M. J. Hohn, I. Ahel et al., “The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 22, pp. 12984–12988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. U. Jahn, M. Gallenberger, W. Paper et al., “Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea,” Journal of Bacteriology, vol. 190, no. 5, pp. 1743–1750, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. H. A. Barker, “Studies on the methane fermentation. V. Biochemical activities of Methanobacterium omelianskii,” Journal of Biological Chemistry, vol. 137, no. 1, pp. 153–167, 1941. View at Google Scholar
  31. M. P. Bryant, E. A. Wolin, M. J. Wolin, and R. S. Wolfe, “Methanobacillus omelianskii, a symbiotic association of two species of bacteria,” Archiv für Mikrobiologie, vol. 59, no. 1–3, pp. 20–31, 1967. View at Publisher · View at Google Scholar · View at Scopus
  32. C. A. Reddy, M. P. Bryant, and M. J. Wolin, “Characteristics of S organism isolated from Methanobacillus omelianskii,” Journal of Bacteriology, vol. 109, no. 2, pp. 539–545, 1972. View at Google Scholar · View at Scopus
  33. B. Eichler and B. Schink, “Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe,” Archives of Microbiology, vol. 140, no. 2-3, pp. 147–152, 1984. View at Google Scholar · View at Scopus
  34. C. Wallrabenstein, E. Hauschild, and B. Schink, “Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate,” Archives of Microbiology, vol. 164, no. 5, pp. 346–352, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. M. P. Bryant, L. L. Campbell, C. A. Reddy, and M. R. Crabill, “Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2 utilizing methanogenic bacteria,” Applied and Environmental Microbiology, vol. 33, no. 5, pp. 1162–1169, 1977. View at Google Scholar · View at Scopus
  36. A. Ben-Bassat, R. Lamed, and J. G. Zeikus, “Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii,” Journal of Bacteriology, vol. 146, no. 1, pp. 192–199, 1981. View at Google Scholar · View at Scopus
  37. R. Klemps, H. Cypionka, F. Widdel, and N. Pfennig, “Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species,” Archives of Microbiology, vol. 143, no. 2, pp. 203–208, 1985. View at Google Scholar · View at Scopus
  38. H. Imachi, Y. Sekiguchi, Y. Kamagata, S. Hanada, A. Ohashi, and H. Harada, “Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 5, pp. 1729–1735, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Shimoyama, S. Kato, S. Ishii, and K. Watanabe, “Flagellum mediates symbiosis,” Science, vol. 323, no. 5921, p. 1574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. J. M. Stams and C. M. Plugge, “Electron transfer in syntrophic communities of anaerobic bacteria and archaea,” Nature Reviews Microbiology, vol. 7, no. 8, pp. 568–577, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. W. S. Reeburgh, “Methane consumption in Cariaco Trench waters and sediments,” Earth and Planetary Science Letters, vol. 28, no. 3, pp. 337–344, 1976. View at Google Scholar · View at Scopus
  42. K. Knittel and A. Boetius, “Anaerobic oxidation of methane: progress with an unknown process,” Annual Review of Microbiology, vol. 63, pp. 311–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Regnier, A. W. Dale, S. Arndt, D. E. LaRowe, J. Mogollón, and P. Van Cappellen, “Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective,” Earth-Science Reviews, vol. 106, no. 1-2, pp. 105–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Aloisi, C. Pierre, J. M. Rouchy, J. P. Foucher, and J. Woodside, “Methane-related authigenic carbonates of Eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation,” Earth and Planetary Science Letters, vol. 184, no. 1, pp. 321–338, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Peckmann, E. Gischler, W. Oschmann, and J. Reitner, “An Early Carboniferous seep community and hydrocarbon-derived carbonates from the Harz Mountains, Germany,” Geology, vol. 29, no. 3, pp. 271–274, 2001. View at Google Scholar · View at Scopus
  46. G. Aloisi, I. Bouloubassi, S. K. Heijs et al., “CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps,” Earth and Planetary Science Letters, vol. 203, no. 1, pp. 195–203, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. E. De Boever, D. Birgel, V. Thiel et al., “The formation of giant tubular concretions triggered by anaerobic oxidation of methane as revealed by archaeal molecular fossils (Lower Eocene, Varna, Bulgaria),” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 280, no. 1-2, pp. 23–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. E. De Boever, D. Birgel, P. Muchez, J. Peckmann, L. Dimitrov, and R. Swennen, “Fabric and formation of grapestone concretions within an unusual ancient methane seep system (Eocene, Bulgaria),” Terra Nova, vol. 23, no. 1, pp. 56–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. S. B. Ziegenbalg, D. Birgel, L. Hoffmann-Sell, C. Pierre, J. M. Rouchy, and J. Peckmann, “Anaerobic oxidation of methane in hypersaline Messinian environments revealed by 13C-depleted molecular fossils,” Chemical Geology, vol. 292-293, no. 1, pp. 140–148, 2012. View at Google Scholar
  50. J. Peckmann, A. Reimer, U. Luth et al., “Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea,” Marine Geology, vol. 177, no. 1-2, pp. 129–150, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Y. Lein, M. V. Ivanov, N. V. Pimenov, and M. B. Gulin, “Geochemical peculiarities of the carbonate constructions formed during microbial oxidation of methane under anaerobic conditions,” Microbiology, vol. 71, no. 1, pp. 78–90, 2002. View at Google Scholar
  52. W. Michaelis, R. Seifert, K. Nauhaus et al., “Microbial reefs in the black sea fueled by anaerobic oxidation of methane,” Science, vol. 297, no. 5583, pp. 1013–1015, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Reitner, A. Reimer, G. Schumann, V. Thiel, and J. Peckmann, “Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea),” Facies, vol. 51, no. 1–4, pp. 66–79, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Wrede, C. Heller, J. Reitner, and M. Hoppert, “Correlative light/electron microscopy for the investigation of microbial mats from Black Sea Cold Seeps,” Journal of Microbiological Methods, vol. 73, no. 2, pp. 85–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Wrede, V. Krukenberg, A. Dreier, J. Reitner, C. Heller, and M. Hoppert, “Detection of metabolic key enzymes of methane turnover processes in cold seep microbial biofilms,” Geomicrobiology Journal, vol. 30, no. 3, pp. 214–227, 2013. View at Publisher · View at Google Scholar
  56. K. U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewert, and E. F. DeLong, “Methane-consuming archaebacteria in marine sediments,” Nature, vol. 398, no. 6730, pp. 802–805, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. V. J. Orphan, K. U. Hinrichs, W. Ussler III et al., “Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments,” Applied and Environmental Microbiology, vol. 67, no. 4, pp. 1922–1934, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Niemann, T. Lösekann, D. De Beer et al., “Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink,” Nature, vol. 443, no. 7113, pp. 854–858, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. H. J. Mills, R. J. Martinez, S. Story, and P. A. Sobecky, “Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries,” Applied and Environmental Microbiology, vol. 71, no. 6, pp. 3235–3247, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. K. G. Lloyd, L. Lapham, and A. Teske, “An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline gulf of Mexico sediments,” Applied and Environmental Microbiology, vol. 72, no. 11, pp. 7218–7230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. R. J. Martinez, H. J. Mills, S. Story, and P. A. Sobecky, “Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico,” Environmental Microbiology, vol. 8, no. 10, pp. 1783–1796, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Heller, M. Hoppert, and J. Reitner, “Immunological localization of coenzyme M reductase in anaerobic methane-oxidizing archaea of ANME 1 and ANME 2 type,” Geomicrobiology Journal, vol. 25, no. 3-4, pp. 149–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Boetius, K. Ravenschlag, C. J. Schubert et al., “A marine microbial consortium apparently mediating anaerobic oxidation methane,” Nature, vol. 407, no. 6804, pp. 623–626, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Schreiber, T. Holler, K. Knittel, A. Meyerdierks, and R. Amann, “Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade,” Environmental Microbiology, vol. 12, no. 8, pp. 2327–2340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. V. J. Orphan, C. H. House, K. U. Hinrichs, K. D. McKeegan, and E. F. DeLong, “Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 11, pp. 7663–7668, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Durisch-Kaiser, L. Klauser, B. Wehrli, and C. Schubert, “Evidence of intense archaeal and bacterial methanotrophic activity in the Black Sea water column,” Applied and Environmental Microbiology, vol. 71, no. 12, pp. 8099–8106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. G. Eller, L. Känel, and M. Krüger, “Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee,” Applied and Environmental Microbiology, vol. 71, no. 12, pp. 8925–8928, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. C. J. Schubert, M. J. L. Coolen, L. N. Neretin et al., “Aerobic and anaerobic methanotrophs in the Black Sea water column,” Environmental Microbiology, vol. 8, no. 10, pp. 1844–1856, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Treude, V. Orphan, K. Knittel, A. Gieseke, C. H. House, and A. Boetius, “Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea,” Applied and Environmental Microbiology, vol. 73, no. 7, pp. 2271–2283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Pernthaler, A. E. Dekas, C. T. Brown, S. K. Goffredi, T. Embaye, and V. J. Orphan, “Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 19, pp. 7052–7057, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Knittel, T. Lösekann, A. Boetius, R. Kort, and R. Amann, “Diversity and distribution of methanotrophic archaea at cold seeps,” Applied and Environmental Microbiology, vol. 71, no. 1, pp. 467–479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. T. M. Hoehler, M. J. Alperin, D. B. Albert, and C. S. Martens, “Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium,” Global Biogeochemical Cycles, vol. 8, no. 4, pp. 451–463, 1994. View at Google Scholar · View at Scopus
  73. S. D. Wankel, M. M. Adams, D. T. Johnston, C. M. Hansel, S. B. Joye, and P. R. Girguis, “Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction,” Environmental Microbiology, vol. 14, no. 10, pp. 2726–2740, 2012. View at Google Scholar
  74. M. Krüger, A. Meyerdierks, F. O. Glöckner et al., “A conspicuous nickel protein in microbial mats that oxidize methane anaerobically,” Nature, vol. 426, no. 6968, pp. 878–881, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. S. J. Hallam, N. Putnam, C. M. Preston et al., “Reverse methanogenesis: testing the hypothesis with environmental genomics,” Science, vol. 305, no. 5689, pp. 1457–1462, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Scheller, M. Goenrich, R. Boecher, R. K. Thauer, and B. Jaun, “The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane,” Nature, vol. 465, no. 7298, pp. 606–608, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Nauhaus, A. Boetius, M. Krüger, and F. Widdel, “In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area,” Environmental Microbiology, vol. 4, no. 5, pp. 296–305, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Nauhaus, T. Treude, A. Boetius, and M. Krüger, “Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities,” Environmental Microbiology, vol. 7, no. 1, pp. 98–106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Widdel, A. Boetius, and R. Rabus, “Anaerobic biodegradation of hydrocarbons including methane,” in The Prokaryotes, M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt, Eds., pp. 1028–1049, Springer, New York, NY, USA, 2006. View at Google Scholar
  80. J. J. Moran, E. J. Beal, J. M. Vrentas, V. J. Orphan, K. H. Freeman, and C. H. House, “Methyl sulfides as intermediates in the anaerobic oxidation of methane,” Environmental Microbiology, vol. 10, no. 1, pp. 162–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Wegener, H. Niemann, M. Elvert, K. U. Hinrichs, and A. Boetius, “Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane,” Environmental Microbiology, vol. 10, no. 9, pp. 2287–2298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. R. K. Thauer and S. Shima, “Methane as fuel for anaerobic microorganisms,” Annals of the New York Academy of Sciences, vol. 1125, pp. 158–170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Milucka, T. G. Ferdelman, L. Polerecky et al., “Zero-valent sulphur is a key intermediate in marine methane oxidation,” Nature, vol. 491, no. 7425, pp. 541–546, 2012. View at Google Scholar
  84. A. E. Dekas, R. S. Poretsky, and V. J. Orphan, “Deep-Sea archaea fix and share nitrogen in methane-consuming microbial consortia,” Science, vol. 326, no. 5951, pp. 422–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. E. J. Beal, C. H. House, and V. J. Orphan, “Manganese- and iron-dependent marine methane oxidation,” Science, vol. 325, no. 5937, pp. 184–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. K. F. Ettwig, M. K. Butler, D. Le Paslier et al., “Nitrite-driven anaerobic methane oxidation by oxygenic bacteria,” Nature, vol. 464, no. 7288, pp. 543–548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Muller, T. Brissac, N. Le Bris, H. Felbeck, and O. Gros, “First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat,” Environmental Microbiology, vol. 12, no. 8, pp. 2371–2383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. P. B. Eckburg, E. M. Bik, C. N. Bernstein et al., “Microbiology: diversity of the human intestinal microbial flora,” Science, vol. 308, no. 5728, pp. 1635–1638, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. J. H. P. Hackstein, A. Akhmanova, B. Boxma, H. R. Harhangi, and F. G. J. Voncken, “Hydrogenosomes: eukaryotic adaptations to anaerobic environments,” Trends in Microbiology, vol. 7, no. 11, pp. 441–447, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Müller, M. Mentel, J. J. van Hellemond et al., “Biochemistry and evolution of anaerobic energy metabolism in eukaryotes,” Microbiology and Molecular Biology Reviews, vol. 76, no. 2, pp. 444–495, 2012. View at Google Scholar
  91. J. J. A. Van Bruggen, K. B. Zwart, and J. G. F. Hermans, “Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt,” Archives of Microbiology, vol. 144, no. 4, pp. 367–374, 1986. View at Google Scholar · View at Scopus
  92. N. Narayanan, B. Krishnakumar, V. N. Anupama, and V. B. Manilal, “Methanosaeta sp., the major archaeal endosymbiont of Metopus es,” Research in Microbiology, vol. 160, no. 8, pp. 600–607, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. J. H. P. Hackstein and T. A. van Alen, “Methanogens in the gastro-intestinal tract of animals,” in Microbiology Monographs: (Endo)Symbiotic Methanogenic Archaea, J. H. P. Hackstein, Ed., pp. 115–142, Springer, Heidelberg, Germany, 2010. View at Google Scholar
  94. S. Wagener, C. F. Bardele, and N. Pfennig, “Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum,” Archives of Microbiology, vol. 153, no. 5, pp. 496–501, 1990. View at Publisher · View at Google Scholar · View at Scopus
  95. B. J. Finlay and T. Fenchel, “Polymorphic bacterial symbionts in the anaerobic ciliated protozoon Metopus,” FEMS Microbiology Letters, vol. 79, no. 2-3, pp. 187–190, 1991. View at Google Scholar · View at Scopus
  96. B. J. Finlay, T. M. Embley, and T. Fenchel, “A new polymorphic methanogen, closely related to Methanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliate Trimyema sp,” Journal of General Microbiology, vol. 139, no. 2, pp. 371–378, 1993. View at Google Scholar · View at Scopus
  97. R. Gross, F. Vavre, A. Heddi, G. D. D. Hurst, E. Zchori-Fein, and K. Bourtzis, “Immunity and symbiosis,” Molecular Microbiology, vol. 73, no. 5, pp. 751–759, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Moya, J. Peretó, R. Gil, and A. Latorre, “Learning how to live together: genomic insights into prokaryote-animal symbioses,” Nature Reviews Genetics, vol. 9, no. 3, pp. 218–229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. F. Husník, T. Chrudimský, and V. Hypška, “Multiple origins of endosymbiosis within the Enterobacteriaceae (gamma-Proteobacteria): convergence of complex phylogenetic approaches,” BMC Biology, vol. 9, no. 87, pp. 1–17, 2011. View at Google Scholar
  100. N. S. Webster and L. L. Blackall, “What do we really know about sponge-microbial symbioses,” The ISME Journal, vol. 3, no. 1, pp. 1–3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Maldonado, N. Cortadellas, M. I. Trillas, and K. Rützler, “Endosymbiotic yeast maternally transmitted in a marine sponge,” The Biological Bulletin, vol. 209, no. 2, pp. 94–106, 2005. View at Google Scholar · View at Scopus
  102. T. Pape, F. Hoffmann, N. V. Quéric, K. Von Juterzenka, J. Reitner, and W. Michaelis, “Dense populations of Archaea associated with the demosponge Tentorium semisuberites Schmidt, 1870 from Arctic deep-waters,” Polar Biology, vol. 29, no. 8, pp. 662–667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. A. S. Turque, D. Batista, C. B. Silveira et al., “Environmental shaping of sponge associated archaeal communities,” PLoS ONE, vol. 5, no. 12, Article ID e15774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. C. Brochier-Armanet, B. Boussau, S. Gribaldo, and P. Forterre, “Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota,” Nature Reviews Microbiology, vol. 6, no. 3, pp. 245–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Spang, R. Hatzenpichler, C. Brochier-Armanet et al., “Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota,” Trends in Microbiology, vol. 18, no. 8, pp. 331–340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. C. M. Preston, K. Y. Wu, T. F. Molinski, and E. F. Delong, “A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 13, pp. 6241–6246, 1996. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Margot, C. Acebal, E. Toril, R. Amils, and J. L. Fernandez Puentes, “Consistent association of crenarchaeal Archaea with sponges of the genus Axinella,” Marine Biology, vol. 140, no. 4, pp. 739–745, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Han, F. Liu Zhang, Z. Li, and H. Lin, “Bacterial and Archaeal symbionts in the south China Sea sponge Phakellia fusca: community structure, relative abundance, and ammonia-oxidizing populations,” Marine Biotechnology, vol. 14, no. 6, pp. 701–713, 2012. View at Publisher · View at Google Scholar
  109. R. Radax, T. Rattei, A. Lanzen et al., “Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community,” Environmental Microbiology, vol. 14, no. 5, pp. 1308–1324, 2012. View at Google Scholar
  110. D. Steger, P. Ettinger-Epstein, S. Whalan et al., “Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges,” Environmental Microbiology, vol. 10, no. 4, pp. 1087–1094, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Martínez-García, P. Stief, M. Díaz-Valdés et al., “Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian,” Environmental Microbiology, vol. 10, no. 11, pp. 2991–3001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. J. M. Beman, K. J. Roberts, L. Wegley, F. Rohwer, and C. A. Francis, “Distribution and diversity of archaeal ammonia monooxygenase genes associated with corals,” Applied and Environmental Microbiology, vol. 73, no. 17, pp. 5642–5647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. N. Siboni, E. Ben-Dov, A. Sivan, and A. Kushmaro, “Geographic specific coral-associated ammonia-oxidizing archaea in the northern Gulf of Eilat (Red Sea),” Microbiology Ecology, vol. 64, no. 1, pp. 18–24, 2012. View at Google Scholar
  114. M. Pester, C. Schleper, and M. Wagner, “The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology,” Current Opinion in Microbiology, vol. 14, no. 3, pp. 300–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Pester and A. Brune, “Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts,” The ISME Journal, vol. 1, no. 6, pp. 551–565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. J. H. P. Hackstein and C. K. Stumm, “Methane production in terrestrial arthropods,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 12, pp. 5441–5445, 1994. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Brauman, J. Doré, P. Eggleton, D. Bignell, J. A. Breznak, and M. D. Kane, “Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits,” FEMS Microbiology Ecology, vol. 35, no. 1, pp. 27–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  118. S. E. Donovan, K. J. Purdy, M. D. Kane, and P. Eggleton, “Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types,” Applied and Environmental Microbiology, vol. 70, no. 7, pp. 3884–3892, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. B. J. Tindall, H. N. M. Ross, and W. D. Grant, “Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria,” Systematic and Applied Microbiology, vol. 5, no. 1, pp. 41–57, 1984. View at Google Scholar
  120. K. L. Denman, G. Brasseur, A. Chidthaisong et al., “Couplings between changes in the climate system and biogeochemistry,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning et al., Eds., pp. 500–587, Cambridge University Press, New York, NY, USA.
  121. W. B. Whitman and R. S. Wolfe, “Activation of the methylreductase system from Methanobacterium bryantii by ATP,” Journal of Bacteriology, vol. 154, no. 2, pp. 640–649, 1983. View at Google Scholar · View at Scopus
  122. S. C. Leahy, W. J. Kelly, E. Altermann et al., “The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions,” PloS one, vol. 5, no. 1, p. e8926, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. R. B. Hespell, R. Wolf, and R. J. Bothast, “Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria,” Applied and Environmental Microbiology, vol. 53, no. 12, pp. 2849–2853, 1987. View at Google Scholar · View at Scopus
  124. T. L. Miller and S. E. Jenesel, “Enzymology of butyrate formation by Butyrivibrio fibrisolvens,” Journal of Bacteriology, vol. 138, no. 1, pp. 99–104, 1979. View at Google Scholar · View at Scopus
  125. B. J. Finlay, G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley, and R. P. Hirt, “Some rumen ciliates have endosymbiotic methanogens,” FEMS Microbiology Letters, vol. 117, no. 2, pp. 157–161, 1994. View at Publisher · View at Google Scholar · View at Scopus
  126. J. H. P. Hackstein, “Eukaryotic molecular biodiversity: systematic approaches for the assessment of symbiotic associations,” Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, vol. 72, no. 1, pp. 63–76, 1997. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Grajal, S. D. Strahl, R. Parra, M. G. Dominguez, and A. Neher, “Foregut fermentation in the hoatzin, a neotropical leaf-eating bird,” Science, vol. 245, no. 4923, pp. 1236–1238, 1989. View at Google Scholar · View at Scopus
  128. F. Godoy-Vitorino, R. E. Ley, Z. Gao et al., “Bacterial community in the crop of the hoatzin, a neotropical folivorous flying bird,” Applied and Environmental Microbiology, vol. 74, no. 19, pp. 5905–5912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. A. D. G. Wright, K. S. Northwood, and N. E. Obispo, “Rumen-like methanogens identified from the crop of the folivorous South American bird, the hoatzin (Opisthocomus hoazin),” The ISME Journal, vol. 3, no. 10, pp. 1120–1126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. B. S. Samuel and J. I. Gordon, “A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 10011–10016, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. T. Thiergart, G. Landan, M. Schenk, T. Dagan, and W. F. Martin, “An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin,” Genome Biology and Evolution, vol. 4, no. 4, pp. 466–485, 2012. View at Google Scholar