Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2012, Article ID 940159, 13 pages
http://dx.doi.org/10.1155/2012/940159
Research Article

Impact of Trichloroethylene Exposure on the Microbial Diversity and Protein Expression in Anaerobic Granular Biomass at 37°C and 15°C

1Microbial Ecology Laboratory, Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
2Functional Environmental Microbiology, Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
3BSRC Mass Spectrometry Facility, University of St Andrews, St Andrews KY16 9ST, UK

Received 13 July 2012; Accepted 14 September 2012

Academic Editor: Michael Hoppert

Copyright © 2012 Alma Siggins et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Lettinga, “Anaerobic digestion and wastewater treatment systems,” Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, vol. 67, no. 1, pp. 3–28, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Massé, Y. Gilbert, and E. Topp, “Pathogen removal in farm-scale psychrophilic anaerobic digesters processing swine manure,” Bioresource Technology, vol. 102, no. 2, pp. 641–646, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. R. M. McKeown, C. Scully, T. Mahony, G. Collins, and V. O'Flaherty, “Long-term (1243 days), low-temperature (4–15°C), anaerobic biotreatment of acidified wastewaters: bioprocess performance and physiological characteristics,” Water Research, vol. 43, no. 6, pp. 1611–1620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Amani, M. Nosrati, and T. R. Sreekrishnan, “Anaerobic digestion from the viewpoint of microbiological, chemical and operational aspects—a review,” Environmental Reviews, vol. 18, pp. 255–278, 2010. View at Publisher · View at Google Scholar
  5. A. M. Enright, G. Collins, and V. O'Flaherty, “Temporal microbial diversity changes in solvent-degrading anaerobic granular sludge from low-temperature (15°C) wastewater treatment bioreactors,” Systematic and Applied Microbiology, vol. 30, no. 6, pp. 471–482, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Bialek, J. Kim, C. Lee, G. Collins, T. Mahony, and V. O'Flaherty, “Quantitative and qualitative analyses of methanogenic community development in high-rate anaerobic bioreactors,” Water Research, vol. 45, no. 3, pp. 1298–1308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Tabatabaei, R. A. Rahim, N. Abdullah et al., “Importance of the methanogenic archaea populations in anaerobic wastewater treatments,” Process Biochemistry, vol. 45, no. 8, pp. 1214–1225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Liu and W. B. Whitman, “Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea,” Annals of the New York Academy of Sciences, vol. 1125, pp. 171–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Siggins, A. M. Enright, and V. O'Flaherty, “Methanogenic community development in anaerobic granular bioreactors treating trichloroethylene (TCE)-contaminated wastewater at 37°C and 15°C,” Water Research, vol. 45, no. 8, pp. 2452–2462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. USEPA United States National Toxicology Program, 12th Report on carcinogens, 2011, http://ntp.niehs.nih.gov/ntp/roc/twelfth/profiles/Trichloroethylene.pdf.
  11. P. J. M. Middeldorp, M. L. G. C. Luijten, B. A. Van de Pas et al., “Anaerobic microbial reductive dehalogenation of chlorinated ethenes,” Bioremediation Journal, vol. 3, no. 3, pp. 151–169, 1999. View at Google Scholar · View at Scopus
  12. J. D. Coates, M. F. Coughlan, and E. Colleran, “Simple method for the measurement of the hydrogenotrophic methanogenic activity of anaerobic sludges,” Journal of Microbiological Methods, vol. 26, no. 3, pp. 237–246, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Colleran, F. Concannon, T. Golden et al., “Use of methanogenic activity tests to characterize anaerobic sludges, screen for anaerobic biodegradability and determine toxicity thresholds against individual anaerobic trophic,” Water Science and Technology, vol. 25, no. 7, pp. 31–40, 1992. View at Google Scholar · View at Scopus
  14. E. F. DeLong, “Archaea in coastal marine environments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5685–5689, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. D. J. Lane, B. Pace, and G. J. Olsen, “Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 20, pp. 6955–6959, 1985. View at Google Scholar · View at Scopus
  16. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. D. L. Swofford, PAUP. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4, Sinauer Associates, Sunderland, Mass, USA, 2001.
  18. E. H. Simpson, “Measurement of diversity,” Nature, vol. 163, no. 4148, p. 688, 1949. View at Google Scholar · View at Scopus
  19. G. Muyzer, E. C. De Waal, and A. G. Uitterlinden, “Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA,” Applied and Environmental Microbiology, vol. 59, no. 3, pp. 695–700, 1993. View at Google Scholar · View at Scopus
  20. B. McCune and J. B. Grace, Analysis of Ecological Communities, MjM Software, Corvallis, Ore, USA, 2002.
  21. F. Abram, E. Gunnigle, and V. O'Flaherty, “Optimisation of protein extraction and 2-DE for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms,” Electrophoresis, vol. 30, no. 23, pp. 4149–4151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Abram, A. M. Enright, J. O'Reilly, C. H. Botting, G. Collins, and V. O'Flaherty, “A metaproteomic approach gives functional insights into anaerobic digestion,” Journal of Applied Microbiology, vol. 110, no. 6, pp. 1550–1560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Google Scholar · View at Scopus
  24. F. E. Löffler, Q. Sun, J. Li, and J. M. Tiedje, “16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species,” Applied and Environmental Microbiology, vol. 66, no. 4, pp. 1369–1374, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Chouari, D. Le Paslier, P. Daegelen, P. Ginestet, J. Weissenbach, and A. Sghir, “Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester,” Environmental Microbiology, vol. 7, no. 8, pp. 1104–1115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. J. J. Godon, E. Zumstein, P. Dabert, F. Habouzit, and R. Moletta, “Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis,” Applied and Environmental Microbiology, vol. 63, no. 7, pp. 2802–2813, 1997. View at Google Scholar · View at Scopus
  27. F. A. M. De Bok, M. L. G. C. Luijten, and A. J. M. Stams, “Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei,” Applied and Environmental Microbiology, vol. 68, no. 9, pp. 4247–4252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Dong, C. M. Plugge, and A. J. M. Stams, “Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens,” Applied and Environmental Microbiology, vol. 60, no. 8, pp. 2834–2838, 1994. View at Google Scholar · View at Scopus
  29. S. Becker, P. Boger, R. Oehlmann, and A. Ernst, “PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities,” Applied and Environmental Microbiology, vol. 66, no. 11, pp. 4945–4953, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Talbot, E. Topp, M. F. Palin, and D. I. Massé, “Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors,” Water Research, vol. 42, no. 3, pp. 513–537, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. C. J. Tang, P. Zheng, Q. Mahmood, and J. W. Chen, “Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge,” Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 8, pp. 1093–1100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Abeliovich, “Transformations of ammonia and the environmental impact of nitrifying bacteria,” Biodegradation, vol. 3, no. 2-3, pp. 255–264, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Imachi, Y. Sekiguchi, Y. Kamagata, A. Ohashi, and H. Harada, “Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge,” Applied and Environmental Microbiology, vol. 66, no. 8, pp. 3608–3615, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Hatamoto, H. Imachi, S. Fukayo, A. Ohashi, and H. Harada, “Syntrophomonas palmitatica sp. nov., an anaerobic syntrophic, long-chain fatty-acid-oxidizing bacterium isolated from methanogenic sludge,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 9, pp. 2137–2142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. T. Brosnan and M. E. Brosnan, “The sulfur-containing amino acids: an overview,” Journal of Nutrition, vol. 136, no. 6, pp. 16365–16405, 2006. View at Google Scholar · View at Scopus
  36. L. H. Lash, J. W. Fisher, J. C. Lipscomb, and J. C. Parker, “Metabolism of trichloroethylene,” Environmental Health Perspectives, vol. 108, no. 2, pp. 177–200, 2000. View at Google Scholar · View at Scopus
  37. A. Siggins, A. M. Enright, and V. O'Flaherty, “Temperature dependent (37-15°C) anaerobic digestion of a trichloroethylene-contaminated wastewater,” Bioresource Technology, vol. 102, no. 17, pp. 7645–7656, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Siggins, A. M. Enright, and V. O'Flaherty, “Low-temperature (7°C) anaerobic treatment of a trichloroethylene-contaminated wastewater: microbial community development,” Water Research, vol. 45, no. 13, pp. 4035–4046, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Bastida, C. Nicolás, J. L. Moreno, T. Hernández, and C. García, “Tracing changes in the microbial community of a hydrocarbon-polluted soil by culture-dependent proteomics,” Pedosphere, vol. 20, no. 4, pp. 479–485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Williams, E. B. Taylor, and H. P. Mula, “Metaproteomic characterization of a soil microbial community following carbon amendment,” Soil Biology and Biochemistry, vol. 42, no. 7, pp. 1148–1156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Wilmes, M. Wexler, and P. L. Bond, “Metaproteomics provides functional insight into activated sludge wastewater treatment,” PLoS ONE, vol. 3, no. 3, Article ID e1778, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Wilmes, A. F. Andersson, M. G. Lefsrud et al., “Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal,” The ISME Journal, vol. 2, no. 8, pp. 853–864, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Fernández, S. Huang, S. Seston et al., “How stable is stable? Function versus community composition,” Applied and Environmental Microbiology, vol. 65, no. 8, pp. 3697–3704, 1999. View at Google Scholar · View at Scopus
  44. S. McHugh, G. Collins, T. Mahony, and V. O'Flaherty, “Biofilm reactor technology for low temperature anaerobic waste treatment: microbiology and process characteristics,” Water Science and Technology, vol. 52, no. 7, pp. 107–113, 2005. View at Google Scholar · View at Scopus