Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2013, Article ID 102972, 8 pages
http://dx.doi.org/10.1155/2013/102972
Research Article

Deposition of Biogenic Iron Minerals in a Methane Oxidizing Microbial Mat

1Institute of Microbiology and Genetics, Georg-August-University, Grisebachstr. 8, 37077 Göttingen, Germany
2Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
3Courant Centre Geobiology, Georg-August-University, Goldschmidtstr. 3, 37077 Göttingen, Germany
4Geoscience Centre Göttingen, Georg-August-University, Goldschmidtstr. 3, 37077 Göttingen, Germany
5Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655 Hannover, Germany

Received 18 September 2012; Revised 13 April 2013; Accepted 20 April 2013

Academic Editor: Charles Cockell

Copyright © 2013 Christoph Wrede et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. V. Burne and L. S. Moore, “Microbialites: organosedimentary deposits of benthic microbial communities,” Palaios, vol. 2, no. 3, pp. 241–254, 1987. View at Google Scholar · View at Scopus
  2. A. W. Decho, “Microbial biofilms in intertidal systems: an overview,” Continental Shelf Research, vol. 20, no. 10-11, pp. 1257–1273, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. V. R. Phoenix and K. O. Konhauser, “Benefits of bacterial biomineralization,” Geobiology, vol. 6, no. 3, pp. 303–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. S. S. Lim, B. E. Laval, G. Slater et al., “Limnology of Pavilion Lake, B. C., Canada: characterization of a microbialite forming environment,” Fundamental and Applied Limnology, vol. 173, no. 4, pp. 329–351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. P. U. P. A. Gilbert, M. Abrecht, and B. H. Frazer, “The organic-mineral interface in biominerals,” Reviews in Mineralogy and Geochemistry, vol. 59, pp. 157–185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. J. Hallam, N. Putnam, C. M. Preston et al., “Reverse methanogenesis: testing the hypothesis with environmental genomics,” Science, vol. 305, no. 5689, pp. 1457–1462, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Peckmann, A. Reimer, U. Luth et al., “Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea,” Marine Geology, vol. 177, no. 1-2, pp. 129–150, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Reitner, J. Peckmann, M. Blumenberg, W. Michaelis, A. Reimer, and V. Thiel, “Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments,” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 227, no. 1–3, pp. 18–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Reitner, J. Peckmann, A. Reimer, G. Schumann, and V. Thiel, “Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea),” Facies, vol. 51, no. 1–4, pp. 66–79, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. T. Milucka, T. G. Ferdelman, L. Polereck et al., “Zero-valent sulphur is a key intermediate in marine methane oxidation,” Nature, vol. 491, no. 7425, pp. 541–546, 2012. View at Google Scholar
  11. K. U. Hinrichs and A. Boetius, “The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry,” in Ocean Margin Systems, G. Wefer, D. Billet, D. Hebbeln, B. B. Jørgensen, M. Schlüter, and T. van Weering, Eds., pp. 457–477, Springer, Heidelberg, Germany, 2002. View at Google Scholar
  12. W. Michaelis, R. Seifert, K. Nauhaus et al., “Microbial reefs in the black sea fueled by anaerobic oxidation of methane,” Science, vol. 297, no. 5583, pp. 1013–1015, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. C. T. Lefèvre, N. Menguy, F. Abreu et al., “A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria,” Science, vol. 334, no. 6063, pp. 1720–1723, 2011. View at Google Scholar
  14. C. Wrede, V. Krukenberg, A. Dreier, J. Reitner, C. Heller, and M. Hoppert, “Detection of metabolic key enzymes of methane turnover processes in cold seep microbial biofilms,” Geomicrobiology Journal, vol. 30, no. 3, pp. 214–227, 2013. View at Google Scholar
  15. M. Hoppert and F. Mayer, “Electron microscopy of native and artificial methylreductase high-molecular-weight complexes in strain Go 1 and Methanococcus voltae,” FEBS Letters, vol. 267, no. 1, pp. 33–37, 1990. View at Publisher · View at Google Scholar · View at Scopus
  16. I. J. Braks, M. Hoppert, S. Roge, and F. Mayer, “Structural aspects and immunolocalization of the F420-reducing and non- F420-reducing hydrogenases,” Journal of Bacteriology, vol. 176, no. 24, pp. 7677–7687, 1994. View at Google Scholar · View at Scopus
  17. M. Krüger, A. Meyerdierks, F. O. Glöckner et al., “A conspicuous nickel protein in microbial mats that oxidize methane anaerobically,” Nature, vol. 426, no. 6968, pp. 878–881, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Wrede, C. Heller, J. Reitner, and M. Hoppert, “Correlative light/electron microscopy for the investigation of microbial mats from Black Sea Cold Seeps,” Journal of Microbiology Methods, vol. 73, no. 2, pp. 85–91, 2008. View at Google Scholar
  19. M. Kämper, S. Vetterkind, R. Berker, and M. Hoppert, “Methods for in situ detection and characterization of extracellular polymers in biofilms by electron microscopy,” Journal of Microbiological Methods, vol. 57, no. 1, pp. 55–64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Bauer, “Electron spectroscopic imaging: an advanced technique for imaging and analysis in transmission electron microscopy,” Methods in Microbiology, vol. 20, pp. 113–146, 1988. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Ress, M. L. Harlow, M. Schwarz, R. M. Marshall, and U. J. McMahan, “Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography,” Journal of Electron Microscopy, vol. 48, no. 3, pp. 277–287, 1999. View at Google Scholar · View at Scopus
  22. C. Heller, M. Hoppert, and J. Reitner, “Immunological localization of coenzyme M reductase in anaerobic methane-oxidizing archaea of ANME 1 and ANME 2 type,” Geomicrobiology Journal, vol. 25, no. 3-4, pp. 149–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. T. J. Beveridge, G. D. Sprott, and P. Whippey, “Ultrastructure, inferred porosity, and gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium,” Journal of Bacteriology, vol. 173, no. 1, pp. 130–140, 1991. View at Google Scholar · View at Scopus
  24. A. Boetius, K. Ravenschlag, C. J. Schubert et al., “A marine microbial consortium apparently mediating anaerobic oxidation methane,” Nature, vol. 407, no. 6804, pp. 623–626, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Schreiber, T. Holler, K. Knittel, A. Meyerdierks, and R. Amann, “Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade,” Environmental Microbiology, vol. 12, no. 8, pp. 2327–2340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Scheffel, M. Gruska, D. Faivre, A. Linaroudis, J. M. Plitzko, and D. Schüler, “An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria,” Nature, vol. 440, no. 7080, pp. 110–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Schieber, “Sedimentary pyrite: a window into the microbial past,” Geology, vol. 30, no. 6, pp. 531–534, 2002. View at Google Scholar · View at Scopus
  28. L. C. W. MacLean, T. Tyliszczak, P. U. P. A. Gilbert et al., “A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm,” Geobiology, vol. 6, no. 5, pp. 471–480, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Pósfai, B. M. Moskowitz, B. Arató et al., “Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1,” Earth and Planetary Science Letters, vol. 249, no. 3-4, pp. 444–455, 2006. View at Publisher · View at Google Scholar · View at Scopus