Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2013, Article ID 106916, 9 pages
http://dx.doi.org/10.1155/2013/106916
Research Article

The Effect of Saturated Fatty Acids on Methanogenesis and Cell Viability of Methanobrevibacter ruminantium

1ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
2ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, 8092 Zurich, Switzerland

Received 23 December 2012; Accepted 21 March 2013

Academic Editor: Yoshizumi Ishino

Copyright © 2013 Xuan Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Wuebbles and K. Hayhoe, “Atmospheric methane and global change,” Earth-Science Reviews, vol. 57, no. 3-4, pp. 177–210, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. E. A. Scheehle and D. Kruger, “Global anthropogenic methane and nitrous oxide emissions,” The Energy Journal, vol. 27, pp. 33–44, 2006. View at Google Scholar · View at Scopus
  3. P. H. Janssen and M. Kirs, “Structure of the archaeal community of the rumen,” Applied Microbiology and Biotechnology, vol. 74, no. 12, pp. 3619–3625, 2008. View at Google Scholar
  4. T. A. McAllister and C. J. Newbold, “Redirecting rumen fermentation to reduce methanogenesis,” Australian Journal of Experimental Agriculture, vol. 48, no. 2, pp. 7–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. K. Thauer, A. K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich, “Methanogenic archaea: ecologically relevant differences in energy conservation,” Nature Reviews Microbiology, vol. 6, no. 8, pp. 579–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. A. Johnson and D. E. Johnson, “Methane emissions from cattle,” Journal of Animal Science, vol. 73, no. 8, pp. 2483–2492, 1995. View at Google Scholar
  7. F. Dohme, A. Machmüller, A. Wasserfallen, and M. Kreuzer, “Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets,” Letters in Applied Microbiology, vol. 32, no. 1, pp. 47–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Machmüller and M. Kreuzer, “Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep,” Canadian Journal of Animal Science, vol. 79, no. 1, pp. 65–72, 1999. View at Google Scholar
  9. C. R. Soliva, L. Meile, I. K. Hindrichsen, M. Kreuzer, and A. Machmüller, “Myristic acid supports the immediate inhibitory effect of lauric acid on ruminal methanogens and methane release,” Anaerobe, vol. 10, no. 5, pp. 269–276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. M. Zhang, Y. Q. Guo, Z. P. Yuan et al., “Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro,” Animal Feed Science and Technology, vol. 146, no. 3-4, pp. 259–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. R. A. Prins, C. J. Van Nevel, and D. I. Demeyer, “Pure culture studies of inhibitors for methanogenic bacteria,” Antonie van Leeuwenhoek, vol. 38, no. 1, pp. 281–287, 1972. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Henderson, “The effects of fatty acids on pure cultures of rumen bacteria,” Journal of Agricultural Science, vol. 81, no. 1, pp. 107–112, 1973. View at Google Scholar
  13. J. O. Zeitz, S. Bucher, X. Zhou, L. Meile, M. Kreuzer, and C. R. Soliva, “Inhibitory effects of saturated fatty acids on methane production by methanogenic Archaea,” Journal of Animal and Feed Science, vol. 22, no. 1, pp. 44–49, 2013. View at Google Scholar
  14. F. Dohme, A. Machmüller, A. Wasserfallen, and M. Kreuzer, “Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC,” Canadian Journal of Animal Science, vol. 80, no. 3, pp. 473–482, 2000. View at Google Scholar · View at Scopus
  15. A. P. Desbois and V. J. Smith, “Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential,” Applied Microbiology and Biotechnology, vol. 85, no. 6, pp. 1629–1642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. B. Parsons, J. Yao, M. W. Frank, P. Jackson, and C. O. Rock, “Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus,” Journal of Bacteriology, vol. 194, no. 19, pp. 5294–5304, 2012. View at Google Scholar
  17. K. Benkendorff, A. R. Davis, C. N. Rogers, and J. B. Bremner, “Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties,” Journal of Experimental Marine Biology and Ecology, vol. 316, no. 1, pp. 29–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. F. C. Küpper, E. Gaquerel, E. M. Boneberg, S. Morath, J. P. Salaün, and P. Potin, “Early events in the perception of lipopolysaccharides in the brown alga Laminaria digitata include an oxidative burst and activation of fatty acid oxidation cascades,” Journal of Experimental Botany, vol. 57, no. 9, pp. 1991–1999, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Kamp, J. A. Hamilton, and H. V. Westerhoff, “Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers,” Biochemistry, vol. 32, no. 41, pp. 11074–11086, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Galbraith and T. B. Miller, “Effect of long chain fatty acids on bacterial respiration and amino acid uptake,” Journal of Applied Bacteriology, vol. 36, no. 4, pp. 659–675, 1973. View at Google Scholar · View at Scopus
  21. P. Boyaval, C. Corre, C. Dupuis, and E. Roussel, “Effects of free fatty acids on propionic acid bacteria,” Lait, vol. 75, no. 1, pp. 17–29, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. L. L. Wang and E. A. Johnson, “Inhibition of Listeria monocytogenes by fatty acids and monoglycerides,” Applied and Environmental Microbiology, vol. 58, no. 2, pp. 624–629, 1992. View at Google Scholar · View at Scopus
  23. P. Tangwatcharin and P. Khopaibool, “Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus,” The Southeast Asian Journal of Tropical Medicine and Public Health, vol. 43, no. 4, pp. 969–985, 2012. View at Google Scholar
  24. G. Bergsson, J. Arnfinnsson, O. Steingrímsson, and H. Thormar, “Killing of Gram-positive cocci by fatty acids and monoglycerides,” APMIS, vol. 109, no. 10, pp. 670–678, 2001. View at Google Scholar · View at Scopus
  25. C. L. Fischer, D. R. Drake, D. V. Dawson, D. R. Blanchette, K. A. Brogden, and P. W. Wertz, “Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 3, pp. 1157–1161, 2012. View at Google Scholar
  26. S. V. Albers and B. H. Meyer, “The archaeal cell envelope,” Nature Review Microbiology, vol. 9, no. 6, pp. 414–426, 2011. View at Google Scholar
  27. G. D. Sprott and K. F. Jarrell, “K+, Na+, and Mg2+ content and permeability of Methanospirillum hungatei and Methanobacterium thermoautotrophicum,” Canadian Journal of Microbiology, vol. 27, no. 4, pp. 444–451, 1981. View at Google Scholar · View at Scopus
  28. S. Leuko, A. Legat, S. Fendrihan, and H. Stan-Lotter, “Evaluation of the LIVE/DEAD BacLight kit for detection of extremophilic archaea and visualization of microorganisms in environmental hypersaline samples,” Applied and Environmental Microbiology, vol. 70, no. 11, pp. 6884–6886, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Bang, A. Schilhabel, K. Weidenbach et al., “Effects of antimicrobial peptides on methanogenic Archaea,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 8, pp. 4123–4130, 2012. View at Google Scholar
  30. H. J. Perski, J. Moll, and R. K. Thauer, “Sodium dependence of growth and methane formation in Methanobacterium thermoautotrophicum,” Archives of Microbiology, vol. 130, no. 4, pp. 319–321, 1981. View at Google Scholar · View at Scopus
  31. G. A. Jones and M. D. Pickard, “Effect of titanium (III) citrate as reducing agent on growth of rumen bacteria,” Applied and Environmental Microbiology, vol. 39, no. 6, pp. 1144–1147, 1980. View at Google Scholar · View at Scopus
  32. J. J. Kabara, D. M. Swieczkowski, A. J. Conley, and J. P. Truant, “Fatty acids and derivatives as antimicrobial agents,” Antimicrobial Agents and Chemotherapy, vol. 2, no. 1, pp. 23–28, 1972. View at Google Scholar · View at Scopus
  33. K. L. Blaxter and J. Czerkawski, “Modifications of the methane production of the sheep by supplementation of its diet,” Journal of the Science of Food and Agriculture, vol. 17, no. 9, pp. 529–540, 1966. View at Google Scholar · View at Scopus
  34. J. Yang, X. Hou, P. S. Mir, and T. A. McAllister, “Anti-Escherichia coli O157:H7 activity of free fatty acids under varying pH,” Canadian Journal of Microbiology, vol. 56, no. 3, pp. 263–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. D. Taylor, B. C. McBride, R. S. Wolfe, and M. P. Bryant, “Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium,” Journal of Bacteriology, vol. 120, no. 2, pp. 974–975, 1974. View at Google Scholar · View at Scopus