Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2013 (2013), Article ID 782012, 7 pages
http://dx.doi.org/10.1155/2013/782012
Research Article

The Potent In Vitro Skin Permeation of Archaeosome Made from Lipids Extracted of Sulfolobus acidocaldarius

1Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran
2Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran

Received 12 August 2013; Revised 17 September 2013; Accepted 15 October 2013

Academic Editor: Nejat Düzgünes

Copyright © 2013 Eskandar Moghimipour et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. J. Patel, D. G. Trivedi, A. K. Bhandari, and D. A. Shah, “Penetration enhancers for transdermal drug delivery system: a review,” Journal of Pharmaceutics and Cosmetology, vol. 1, no. 2, pp. 67–80, 2011. View at Google Scholar
  2. P. Chetanachan, P. Akarachalanon, D. Worawirunwong et al., “Ultrastructural characterization of liposomes using transmission electron microscope,” Advanced Materials Research, vol. 55–57, pp. 709–711, 2008. View at Google Scholar · View at Scopus
  3. S. Mohammadi Samani, H. Montaseri, and M. Jamshidnejad, “Preparation and evaluation of cyproterone acetate liposome for topical drug delivery,” Iranian Journal of Pharmaceutical Sciences, vol. 5, no. 4, pp. 199–204, 2009. View at Google Scholar
  4. H. Trommer and R. H. H. Neubert, “Screening for new antioxidative compounds for topical administration using skin lipid model systems,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 3, pp. 494–506, 2005. View at Google Scholar · View at Scopus
  5. E. Moghimipour and S. Handali, “Liposomes as drug delivery systems: properties and applications,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 4, no. 1, pp. 169–185, 2013. View at Google Scholar
  6. J. S. Dua, A. C. Rana, and A. K. Bhandari, “Liposome: methods of preparation and applications,” International Journal of Pharmaceutical Sciences and Research, vol. 3, no. 2, pp. 14–20, 2012. View at Google Scholar
  7. D. Di Paolo, F. Pastorino, C. Brignole et al., “Drug delivery systems: application of liposomal anti-tumor agents to neuroectodermal cancer treatment,” Tumori, vol. 94, no. 2, pp. 246–253, 2008. View at Google Scholar · View at Scopus
  8. S. Jain, K. Khomane, A. K. Jain, and P. Dani, “Nanocarriers for transmucosal vaccine delivery,” Current Nanoscience, vol. 7, no. 2, pp. 160–177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Barbeau, S. Cammas-Marion, P. Auvray, and T. Benvegnu, “Preparation and characterization of stealth archaeosomes based on synthetic PEGylated archaeal tetraether lipid,” Journal of Drug Delivery, vol. 2011, Article ID 396068, 11 pages, 2011. View at Publisher · View at Google Scholar
  10. T. Benvegnu, L. Lemiègre, and S. Cammas-Marion, “Archaeal lipids: innovative materials for biotechnological applications,” European Journal of Organic Chemistry, no. 28, pp. 4725–4744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. L. C. M. Van de Vossenberg, A. J. M. Driessen, and W. N. Konings, “The essence of being extremophilic: the role of the unique archaeal membrane lipids,” Extremophiles, vol. 2, no. 3, pp. 163–170, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Khosravi-Darani, A. Pardakhty, H. Honarpisheh, V. S. N. M. Rao, and M. R. Mozafari, “The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy,” Micron, vol. 38, no. 8, pp. 804–818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Kanichay, L. T. Boni, P. H. Cooke, T. K. Khan, and P. L.-G. Chong, “Calcium-induced aggregation of archaeal bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius,” Archaea, vol. 1, no. 3, pp. 175–183, 2003. View at Google Scholar · View at Scopus
  14. L. Bagatolli, E. Gratton, T. K. Khan, and P. L.-G. Chong, “Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius,” Biophysical Journal, vol. 79, no. 1, pp. 416–425, 2000. View at Google Scholar · View at Scopus
  15. T. A. Langworthy, “Comparative lipid composition of heterotrophically and autotrophically grown Sulfolobus acidocaldarius,” Journal of Bacteriology, vol. 130, no. 3, pp. 1326–1332, 1977. View at Google Scholar · View at Scopus
  16. T. K. Khan and P. L.-G. Chong, “Studies of archaebacterial bipolar tetraether liposomes by perylene fluorescence,” Biophysical Journal, vol. 78, no. 3, pp. 1390–1399, 2000. View at Google Scholar · View at Scopus
  17. E. Moghimipour, Z. Ramezani, and S. Handali, “Solid lipid nanoparticles as a delivery System for Zataria multiflora essential oil: formulation and characterization,” Current Drug Delivery, vol. 10, pp. 151–157, 2013. View at Google Scholar
  18. J. Shokri, S. Azarmi, Z. Fasihi, V. Hallaj-Nezhadi, A. Nokhodchi, and Y. Javadzadeh, “Effects of various penetration enhancers on percutaneous absorption of piroxicam from emulgels,” Research in Pharmaceutical Sciences, vol. 7, no. 4, pp. 225–234, 2012. View at Google Scholar
  19. D. E. Minnikin, H. Abdolrahimzadeh, and J. Baddiley, “The interrelation of phosphatidylethanolamine and glycosyl diglycerides in bacterial membranes,” Biochemical Journal, vol. 124, no. 2, pp. 447–448, 1971. View at Google Scholar · View at Scopus
  20. R. S. Fager, S. Shapiro, and B. J. Litman, “A large-scale purification of phosphatidylethanolamine, lysophosphatidylethanolamine, and phosphatidylcholine by high performance liquid chromatography: a partial resolution of molecular species,” Journal of Lipid Research, vol. 18, no. 6, pp. 704–709, 1977. View at Google Scholar · View at Scopus
  21. Y. Luo, D. Chen, L. Ren, X. Zhao, and J. Qin, “Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability,” Journal of Controlled Release, vol. 114, no. 1, pp. 53–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Moghimipour, N. Aghel, Z. Mahmoudabadi, Z. Ramezani, and S. Handali, “Preparation and characterization of liposomes containing essential oil of Eucalyptus camaldulensis leaf,” Jundishapur Journal of Natural Pharmaceutical Products, vol. 7, no. 3, pp. 117–122, 2012. View at Google Scholar
  23. Y. Chen, Q. Wu, Z. Zhang, L. Yuan, X. Liu, and L. Zhou, “Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics,” Molecules, vol. 17, pp. 5972–5987, 2012. View at Google Scholar
  24. M. Tabbakhian and J. A. Rogers, “Interaction of insulin, cholesterol-derivatized mannan, and carboxymethyl chitin with liposomes: a differential scanning calorimetry study,” Research in Pharmaceutical Sciences, vol. 7, no. 1, pp. 43–50, 2012. View at Google Scholar · View at Scopus
  25. A. Samad, Y. Sultana, and M. Aqil, “Liposomal drug delivery systems: an update review,” Current Drug Delivery, vol. 4, no. 4, pp. 297–305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. L.-P. Tseng, H.-J. Liang, T.-W. Chung, Y.-Y. Huang, and D.-Z. Liu, “Liposomes incorporated with cholesterol for drug release triggered by magnetic field,” Journal of Medical and Biological Engineering, vol. 27, no. 1, pp. 29–34, 2007. View at Google Scholar · View at Scopus
  27. R. O. Gonzalez, L. H. Higa, R. A. Cutrullis et al., “Archaeosomes made of Halorubrum tebenquichense total polar lipids: a new source of adjuvancy,” BMC Biotechnology, vol. 9, article 1472, p. 71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. I. B. Pathan and C. M. Setty, “Chemical penetration enhancers for transdermal drug delivery systems,” Tropical Journal of Pharmaceutical Research, vol. 8, no. 2, pp. 173–179, 2009. View at Google Scholar · View at Scopus
  29. C. J. Mbah, P. F. Uzor, and E. O. Omeje, “Perspectives on transdermal drug delivery,” Journal of Chemical and Pharmaceutical Research, vol. 3, no. 3, pp. 680–700, 2011. View at Google Scholar · View at Scopus
  30. H. A. E. Benson, “Transdermal drug delivery: penetration enhancement techniques,” Current Drug Delivery, vol. 2, no. 1, pp. 23–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Gonzlez-Paredes, M. Manconi, C. Caddeo, A. Ramos-Cormenzana, M. Monteoliva-Snchez, and A. M. Fadda, “Archaeosomes as carriers for topical delivery of betamethasone dipropionate: in vitro skin permeation study,” Journal of Liposome Research, vol. 20, no. 4, pp. 269–276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, “Kinetic modeling on drug release from controlled drug delivery systems,” Acta Poloniae Pharmaceutica, vol. 67, no. 3, pp. 217–223, 2010. View at Google Scholar · View at Scopus
  33. C. Schiraldi, M. Giuliano, and M. De Rosa, “Perspectives on biotechnological applications of archaea,” Archaea, vol. 1, no. 2, pp. 75–86, 2002. View at Google Scholar · View at Scopus
  34. L. H. Higa, P. Schilrreff, A. P. Perez et al., “Ultradeformable archaeosomes as new topical adjuvants,” Nanomedicine, vol. 8, pp. 1319–1328, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Krishnan, S. Sad, G. B. Patel, and G. D. Sprott, “The potent adjuvant activity of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo,” Journal of Immunology, vol. 166, no. 3, pp. 1885–1893, 2001. View at Google Scholar · View at Scopus
  36. T. Benvegnu, L. Lemiègre, and S. Cammas-Marion, “New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery,” Recent Patents on Drug Delivery and Formulation, vol. 3, no. 3, pp. 206–220, 2009. View at Publisher · View at Google Scholar · View at Scopus