Table of Contents Author Guidelines Submit a Manuscript
Archaea
Volume 2014 (2014), Article ID 957145, 9 pages
http://dx.doi.org/10.1155/2014/957145
Research Article

Seasonal Effects in a Lake Sediment Archaeal Community of the Brazilian Savanna

1Department of Cell Biology, Biological Sciences Institute, University of Brasília, 70910-900 Brasília, DF, Brazil
2Department of Ecology, Biological Sciences Institute, University of Brasília, 70910-900 Brasília, DF, Brazil
3Department of Genomics Science and Biotechnology, Catholic University of Brasília, 70790-160 Brasília, DF, Brazil
4Embrapa-Agroenergy, 70770-901 Brasília, DF, Brazil

Received 23 April 2014; Revised 30 June 2014; Accepted 8 July 2014; Published 20 July 2014

Academic Editor: William B. Whitman

Copyright © 2014 Thiago Rodrigues et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. M. T. Walter, A. M. de Carvalho, and J. F. Ribeiro, “O conceito de savana e de seu componente Cerrado,” in Cerrado: Ecologia e Flora—Volume 1, S. M. Sano, S. P. Almeida, and J.F. Ribeiro, Eds., capítulo 1, pp. 21–45, Embrapa Cerrados, Embrapa Informação Tecnológica, Brasília, Brazil, 2008. View at Google Scholar
  2. G. Eiten, “The cerrado vegetation of Brazil,” The Botanical Review, vol. 38, no. 2, pp. 201–341, 1972. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Clementino, C. C. Fernandes, R. P. Vieira, A. M. Cardoso, C. R. Polycarpo, and O. B. Martins, “Archaeal diversity in naturally occurring and impacted environments from a tropical region,” Journal of Applied Microbiology, vol. 103, no. 1, pp. 141–151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. P. Vieira, M. M. Clementino, A. M. Cardoso et al., “Archaeal communities in a tropical estuarine ecosystem: guanabara bay, Brazil,” Microbial Ecology, vol. 54, no. 3, pp. 460–468, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. G. Taketani and S. M. Tsai, “The influence of different land uses on the structure of archaeal communities in Amazonian anthrosols based on 16S rRNA and amoA genes,” Microbial Ecology, vol. 59, no. 4, pp. 734–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. A. Graças, P. R. Miranda, R. A. Baraúna et al., “Microbial diversity of an anoxic zone of a hydroelectric power station reservoir in Brazilian Amazonia,” Microbial Ecology, vol. 62, no. 4, pp. 853–861, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Bruce, P. M. Meirelles, G. Garcia et al., “Abrolhos bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data,” PLoS ONE, vol. 7, no. 6, Article ID e36687, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Catão, A. P. Castro, C. C. Barreto, R. H. Krüger, and C. M. Kyaw, “Diversity of archaea in Brazilian savanna soils,” Archives of Microbiology, vol. 195, no. 7, pp. 507–512, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Spring, R. Schulze, J. Overmann, and K. Schleifer, “Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies,” FEMS Microbiology Reviews, vol. 24, no. 5, pp. 573–590, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. F. A. Esteves, “Sedimentos Límnicos,” in Fundamentos de limnologia, pp. 339–354, Interciência, Rio de Janeiro, Brazil, 3rd edition, 2011. View at Google Scholar
  11. R. G. Wetzel, “Sediments and microflora,” in Limnology Lake and River Ecosystems, pp. 631–664, Elsevier, San Diego, Calif, USA, 3rd edition, 2001. View at Google Scholar
  12. D. R. Lovley and M. J. Klug, “Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake,” Applied and Environmental Microbiology, vol. 45, no. 4, pp. 1310–1315, 1983. View at Google Scholar · View at Scopus
  13. R. Conrad, T. J. Phelps, and J. G. Zeikus, “Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments,” Applied and Environmental Microbiology, vol. 50, no. 3, pp. 595–601, 1985. View at Google Scholar · View at Scopus
  14. C. Vetriani, H. W. Jannasch, B. J. Macgregor, D. A. Stahl, and A. Reysenbach, “Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments,” Applied and Environmental Microbiology, vol. 65, no. 10, pp. 4375–4384, 1999. View at Google Scholar · View at Scopus
  15. C. P. Antony, J. Colin Murrell, and Y. S. Shouche, “Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments,” FEMS Microbiology Ecology, vol. 81, no. 1, pp. 43–51, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. D. L. Zhu, C. Sun, and H. He, “Detection methanogens in newly settled sediments from xuanwu lake in Nanjing, China,” Current Microbiology, vol. 64, no. 6, pp. 539–544, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Pester, T. Rattei, S. Flechl et al., “AmoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions,” Environmental Microbiology, vol. 14, no. 2, pp. 525–539, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Purkhold, A. Pommerening-Röser, S. Juretschko, M. C. Schmid, H.-P. Koops, and M. Wagner, “Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys,” Applied and Environmental Microbiology, vol. 66, no. 12, pp. 5368–5382, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Könneke, A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Waterbury, and D. A. Stahl, “Isolation of an autotrophic ammonia-oxidizing marine archaeon,” Nature, vol. 437, no. 7058, pp. 543–546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Herrmann, A. M. Saunders, and A. Schramm, “Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments,” Applied and Environmental Microbiology, vol. 75, no. 10, pp. 3127–3136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Brochier-Armanet, B. Boussau, S. Gribaldo, and P. Forterre, “Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota,” Nature Reviews Microbiology, vol. 6, no. 3, pp. 245–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Spang, R. Hatzenpichler, C. Brochier-Armanet et al., “Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota,” Trends in Microbiology, vol. 18, no. 8, pp. 331–340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. H. Yuen and A. G. Pollard, “Determination of nitrogen in agricultural materials by the nessler reagent. II.—Micro-determinations in Plant Tissue and in Soil Extracts,” Journal of the Science of Food and Agriculture, vol. 5, no. 8, pp. 364–369, 1954. View at Publisher · View at Google Scholar
  24. J. Murphy and J. P. Riley, “A modified single solution method for the determination of phosphate in natural waters,” Analytica Chimica Acta, vol. 27, pp. 31–36, 1962. View at Publisher · View at Google Scholar · View at Scopus
  25. E. F. DeLong, “Archaea in coastal marine environments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5685–5689, 1992. View at Publisher · View at Google Scholar · View at Scopus
  26. C. A. Francis, K. J. Roberts, J. M. Beman, A. E. Santoro, and B. B. Oakley, “Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14683–14688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Z. DeSantis, P. Hugenholtz, N. Larsen et al., “Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB,” Applied and Environmental Microbiology, vol. 72, no. 7, pp. 5069–5072, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. P. D. Schloss, S. L. Westcott, T. Ryabin et al., “Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities,” Applied and Environmental Microbiology, vol. 75, no. 23, pp. 7537–7541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Larkin, G. Blackshields, N. P. Brown et al., “Clustal W and clustal X version 2.0,” Bioinformatics, vol. 23, no. 21, pp. 2947–2948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. P. D. Schloss and J. Handelsman, “Status of the microbial census,” Microbiology and Molecular Biology Reviews, vol. 68, no. 4, pp. 686–691, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Mao, A. C. Yannarell, and R. I. Mackie, “Changes in N-Transforming archaea and bacteria in soil during the establishment of bioenergy crops,” PLoS ONE, vol. 6, no. 9, Article ID e24750, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Lozupone, M. Hamady, and R. Knight, “UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context,” BMC Bioinformatics, vol. 7, article 371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. S. M. Thomaz, G. Pereira, and T. A. Pagioro, “Microbial respiration and chemical composition of different sediment fractions in waterbodies of the upper Paraná River floodplain, Brazil,” Brazilian Journal of Biology, vol. 61, no. 2, pp. 277–286, 2001. View at Google Scholar · View at Scopus
  35. D. C. Zardo, G. C. B. Maas, S. Baia, and O. L. S. Weber, “Característircas físico-químicas e microbiológicas do sedimento da microbacia Samambaia—MT, Brasil,” Revista Ciências do Ambiente On-Line, vol. 7, no. 2, pp. 24–28, 2011. View at Google Scholar
  36. M. R. S. S. Silva, Produção de serrapilheira, biomassa e diversidade de comunidades bacterianas do solo em áreas de Cerrado sob diferentes usos e manejos [Dissertação de mestrado], Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, 2004.
  37. J. Borneman and E. W. Triplett, “Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation,” Applied and Environmental Microbiology, vol. 63, no. 7, pp. 2647–2653, 1997. View at Google Scholar · View at Scopus
  38. V. Torsvik and L. Øvreås, “Microbial diversity and function in soil: From genes to ecosystems,” Current Opinion in Microbiology, vol. 5, no. 3, pp. 240–245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. T. F. Thingstad and R. Lignell, “Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand,” Aquatic Microbial Ecology, vol. 13, no. 1, pp. 19–27, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Yang and D. E. Crowley, “Rhizosphere microbial community structure in relation to root location and plant iron nutritional status,” Applied and Environmental Microbiology, vol. 66, no. 1, pp. 345–351, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. S. U. Sarathchandra, A. Ghani, G. W. Yeates, G. Burch, and N. R. Cox, “Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils,” Soil Biology and Biochemistry, vol. 33, no. 7-8, pp. 953–964, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Pernthaler, F. Glöckner, S. Unterholzner, A. Alfreider, R. Psenner, and R. Amann, “Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake,” Applied and Environmental Microbiology, vol. 64, no. 11, pp. 4299–4306, 1998. View at Google Scholar · View at Scopus
  43. K. Cruz-Martínez, K. B. Suttle, E. L. Brodie, M. E. Power, G. L. Andersen, and J. F. Banfield, “Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland,” The ISME Journal, vol. 3, no. 6, pp. 738–744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Rasche, D. Knapp, C. Kaiser et al., “Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest,” ISME Journal, vol. 5, no. 3, pp. 389–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Ruppel, V. Torsvik, F. L. Daae, L. Øvreås, and J. Rühlmann, “Nitrogen availability decreases prokaryotic diversity in sandy soils,” Biology and Fertility of Soils, vol. 43, no. 4, pp. 449–459, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Meng, J. Xu, D. Qin, Y. He, X. Xiao, and F. Wang, “Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses,” The ISME Journal, vol. 8, no. 3, pp. 650–659, 2014. View at Google Scholar
  47. A. Teske, “Microbial communities of deep marine subsurface sediments: molecular and cultivation surveys,” Geomicrobiology Journal, vol. 23, no. 6, pp. 357–368, 2006. View at Google Scholar
  48. K. Kubo, K. G. Lloyd, J. F Biddle, R. Amann, A. Teske, and K. Knittel, “Archaea of the miscellaneous crenarchaeotal group are abundant, diverse and widespread in marine sediments,” ISME Journal, vol. 6, no. 10, pp. 1949–1965, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. J. C. Fry, R. J. Parkes, B. A. Cragg, A. J. Weightman, and G. Webster, “Prokaryotic biodiversity and activity in the deep subseafloor biosphere,” FEMS Microbiology Ecology, vol. 66, no. 2, pp. 181–196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Pester, C. Schleper, and M. Wagner, “The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology,” Current Opinion in Microbiology, vol. 14, no. 3, pp. 300–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Teske, K. Hinrichs, V. Edgcomb et al., “Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities,” Applied and Environmental Microbiology, vol. 68, no. 4, pp. 1994–2007, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Glissmann, K.-J. Chin, P. Casper, and R. Conrad, “Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature,” Microbial Ecology, vol. 48, no. 3, pp. 389–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Banning, F. Brock, J. C. Fry, R. J. Parkes, E. R. C. Hornibrook, and A. J. Weightman, “Investigation of the methanogen population structure and activity in a brackish lake sediment,” Environmental Microbiology, vol. 7, no. 7, pp. 947–960, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. C. C. On, P. Claus, P. Casper, A. Ulrich, T. Lueders, and R. Conrad, “Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment,” Environmental Microbiology, vol. 7, no. 8, pp. 1139–1149, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. I. C. Torres, K. S. Inglett, and K. R. Reddy, “Heterotrophic microbial activity in lake sediments: effects of organic electron donors,” Biogeochemistry, vol. 104, no. 1–3, pp. 165–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. G. C. Baker, J. J. Smith, and D. A. Cowan, “Review and re-analysis of domain-specific 16S primers,” Journal of Microbiological Methods, vol. 55, no. 3, pp. 541–555, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. S. G. Acinas, R. Sarma-Rupavtarm, V. Klepac-Ceraj, and M. F. Polz, “PCR-induced sequence artifacts and bias: Insights from comparison of two 16s rRNA clone libraries constructed from the same sample,” Applied and Environmental Microbiology, vol. 71, no. 12, pp. 8966–8969, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. E. F. Delong, “Everything in moderation: Archaea as ‘non-extremophiles’,” Current Opinion in Genetics and Development, vol. 8, no. 6, pp. 649–654, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. L. A. Sauder, K. Engel, J. C. Stearns, A. P. Masella, R. Pawliszyn, and J. D. Neufeld, “Aquarium nitrification revisited: thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters,” PLoS ONE, vol. 6, no. 8, Article ID e23281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. W. L. Balderston and W. J. Payne, “Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides,” Applied and Environmental Microbiology, vol. 32, no. 2, pp. 264–269, 1976. View at Google Scholar · View at Scopus
  61. J. Procházka, P. Dolejš, J. Máca, and M. Dohányos, “Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen,” Applied Microbiology and Biotechnology, vol. 93, no. 1, pp. 439–447, 2012. View at Publisher · View at Google Scholar
  62. L. E. Lehtovirta-Morley, K. Stoecker, A. Vilcinskas, J. I. Prosser, and G. W. Nicol, “Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 38, pp. 15892–15897, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. J. C. Auguet and E. O. Casamayor, “Partitioning of Thaumarchaeota populations along environmental gradients in high mountain lakes,” FEMS Microbiology Ecology, vol. 84, no. 1, pp. 154–164, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Gubry-Rangin, B. Hai, C. Quince et al., “Niche specialization of terrestrial archaeal ammonia oxidizers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 52, pp. 21206–21211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. E. O. Casamayor, G. Muyzer, and C. Pedrós-Alió, “Composition and temporal dynamics of planktonic archaeal assemblages from anaerobic sulfurous environments studied by 16S rDNA denaturing gradient gel electrophoresis and sequencing,” Aquatic Microbial Ecology, vol. 25, no. 3, pp. 237–246, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Llirós, E. O. Casamayor, and C. Borrego, “High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study,” FEMS Microbiology Ecology, vol. 66, no. 2, pp. 331–342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. J.-C. Auguet, N. Nomokonova, L. Camarero, and E. O. Casamayor, “Seasonal changes of freshwater ammonia-oxidizing archaeal assemblages and nitrogen species in oligotrophic alpine lakes,” Applied and Environmental Microbiology, vol. 77, no. 6, pp. 1937–1945, 2011. View at Publisher · View at Google Scholar · View at Scopus