Table of Contents Author Guidelines Submit a Manuscript
Volume 2016 (2016), Article ID 8734894, 10 pages
Research Article

Characterization of a Thermostable 8-Oxoguanine DNA Glycosylase Specific for GO/N Mismatches from the Thermoacidophilic Archaeon Thermoplasma volcanium

Department of Molecular Biology, Faculty of Pharmaceutical Science, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan

Received 30 March 2016; Revised 27 August 2016; Accepted 7 September 2016

Academic Editor: Nils K. Birkeland

Copyright © 2016 Miki Fujii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The oxidation of guanine (G) to 7,8-dihydro-8-oxoguanine (GO) forms one of the major DNA lesions generated by reactive oxygen species (ROS). The GO can be corrected by GO DNA glycosylases (Ogg), enzymes involved in base excision repair (BER). Unrepaired GO induces mismatched base pairing with adenine (A); as a result, the mismatch causes a point mutation, from G paired with cytosine (C) to thymine (T) paired with adenine (A), during DNA replication. Here, we report the characterization of a putative Ogg from the thermoacidophilic archaeon Thermoplasma volcanium. The 204-amino acid sequence of the putative Ogg (TVG_RS00315) shares significant sequence homology with the DNA glycosylases of Methanocaldococcus jannaschii (MjaOgg) and Sulfolobus solfataricus (SsoOgg). The six histidine-tagged recombinant TVG_RS00315 protein gene was expressed in Escherichia coli and purified. The Ogg protein is thermostable, with optimal activity near a pH of 7.5 and a temperature of 60°C. The enzyme displays DNA glycosylase, and apurinic/apyrimidinic (AP) lyase activities on GO/N (where N is A, T, G, or C) mismatch; yet it cannot eliminate U from U/G or T from T/G, as mismatch glycosylase (MIG) can. These results indicate that TvoOgg-encoding TVG_RS00315 is a member of the Ogg2 family of T. volcanium.