Table of Contents Author Guidelines Submit a Manuscript
Anatomy Research International
Volume 2012, Article ID 106529, 14 pages
http://dx.doi.org/10.1155/2012/106529
Review Article

Molecular Regulation of Striatal Development: A Review

Brain Repair Group, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK

Received 16 June 2011; Accepted 7 October 2011

Academic Editor: David Bueno

Copyright © 2012 A. E. Evans et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Bates, P. S. Harper, and L. Jones, Huntigton's Disease, 2002.
  2. R. A. Hauser, S. Furtado, C. R. Cimino et al., “Bilateral human fetal striatal transplantation in Huntington's disease,” Neurology, vol. 58, no. 5, pp. 687–695, 2002. View at Google Scholar · View at Scopus
  3. C. R. Gerfen, “The neostriatal mosaic: multiple levels of compartmental organization,” Trends in Neurosciences, vol. 15, no. 4, pp. 133–139, 1992. View at Google Scholar · View at Scopus
  4. C. M. Kelly, S. B. Dunnett, and A. E. Rosser, “Medium spiny neurons for transplantation in Huntington's disease,” Biochemical Society Transactions, vol. 37, no. 1, pp. 323–328, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. A. C. Bachoud-Lévi, V. Gaura, P. Brugières et al., “Effect of fetal neural transplants in patients with Huntington's disease 6 years after surgery: a long-term follow-up study,” Lancet Neurology, vol. 5, no. 4, pp. 303–309, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. J. L. R. Rubenstein, K. Shimamura, S. Martinez, and L. Puelles, “Regionalization of the prosencephalic neural plate,” Annual Review of Neuroscience, vol. 21, pp. 445–477, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. Jain, R. J. E. Armstrong, R. A. Barker, and A. E. Rosser, “Cellular and molecular aspects of striatal development,” Brain Research Bulletin, vol. 55, no. 4, pp. 533–540, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A. S. Fernandez, C. Pieau, J. Repérant, E. Boncinelli, and M. Wassef, “Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes,” Development, vol. 125, no. 11, pp. 2099–2111, 1998. View at Google Scholar · View at Scopus
  9. L. Puelles, E. Kuwana, E. Puelles et al., “Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1,” Journal of Comparative Neurology, vol. 424, no. 3, pp. 409–438, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. R. R. Sturrock, “A comparative quantitative and morphological study of ageing in the mouse neostriatum, indusium griseum and anterior commissure,” Neuropathology and Applied Neurobiology, vol. 6, no. 1, pp. 51–68, 1980. View at Google Scholar · View at Scopus
  11. T. W. Deacon, P. Pakzaban, and O. Isacson, “The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence,” Brain Research, vol. 668, no. 1-2, pp. 211–219, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Campbell, “Dorsal-ventral patterning in the mammalian telencephalon,” Current Opinion in Neurobiology, vol. 13, no. 1, pp. 50–56, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. A. Anderson, M. Qiu, A. Bulfone et al., “Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons,” Neuron, vol. 19, no. 1, pp. 27–37, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Campbell, M. Olsson, and A. Björklund, “Regional incorporation and site-specific differentiation of striatal precursors transplanted to the embryonic forebrain ventricle,” Neuron, vol. 15, no. 6, pp. 1259–1273, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Olsson, A. Björklund, and K. Campbell, “Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence,” Neuroscience, vol. 84, no. 3, pp. 867–876, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. R. O'Rahilly and F. Muller, The Embryonic Human Brain: An Atlas of Development Stages, Wiley-Liss, New York, NY, USA, 1999.
  17. M. Manuel, B. Martynoga, T. Yu, J. D. West, J. O. Mason, and D. J. Price, “The transcription factor Foxg1 regulates the competence of telencephalic cells to adopt subpallial fates in mice,” Development, vol. 137, no. 3, pp. 487–497, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. I. Mason, “Initiation to end point: the multiple roles of fibroblast growth factors in neural development,” Nature Reviews Neuroscience, vol. 8, no. 8, pp. 583–596, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. H. Paek, G. Gutin, and J. M. Hébert, “FGF signaling is strictly required to maintain early telencephalic precursor cell survival,” Development, vol. 136, no. 14, pp. 2457–2465, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. K. Shimamura and J. L. R. Rubenstein, “Inductive interactions direct early regionalization of the mouse forebrain,” Development, vol. 124, no. 14, pp. 2709–2718, 1997. View at Google Scholar · View at Scopus
  21. W. Ye, K. Shimamura, J. L. R. Rubenstein, M. A. Hynes, and A. Rosenthal, “FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate,” Cell, vol. 93, no. 5, pp. 755–766, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Shanmugalingam, C. Houart, A. Picker et al., “Ace/Fgf8 is required for forebrain commissure formation and patterning of the telencephalon,” Development, vol. 127, no. 12, pp. 2549–2561, 2000. View at Google Scholar · View at Scopus
  23. E. E. Storm, S. Garel, U. Borello et al., “Dose-dependent functions fo Fgf8 in regulating telencephalic patterning centers,” Development, vol. 133, no. 9, pp. 1831–1844, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. S. W. Wilson and J. L. R. Rubenstein, “Induction and dorsoventral patterning of the telencephalon,” Neuron, vol. 28, no. 3, pp. 641–651, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. J. A. Cholfin and J. L. R. Rubenstein, “Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2,” Journal of Comparative Neurology, vol. 509, no. 2, pp. 144–155, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. U. Borello, I. Cobos, J. E. Long, C. Murre, and J. L. R. Rubenstein, “FGF15 promotes neurogenesis and opposes FGF8 function during neocortical development,” Neural Development, vol. 3, no. 1, article 17, 2008. View at Publisher · View at Google Scholar · View at PubMed
  27. Y. Echelard, D. J. Epstein, B. St-Jacques et al., “Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity,” Cell, vol. 75, no. 7, pp. 1417–1430, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Roelink, J. A. Porter, C. Chiang et al., “Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis,” Cell, vol. 81, no. 3, pp. 445–455, 1995. View at Google Scholar · View at Scopus
  29. K. Shimamura, D. J. Hartigan, S. Martinez, L. Puelles, and J. L. R. Rubenstein, “Longitudinal organization of the anterior neural plate and neural tube,” Development, vol. 121, no. 12, pp. 3923–3933, 1995. View at Google Scholar · View at Scopus
  30. S. Nery, J. G. Corbin, and G. Fishell, “Dlx2 progenitor migration in wild type and Nkx2.1 Mutant telencephalon,” Cerebral Cortex, vol. 13, no. 9, pp. 895–903, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. T. M. Jessell, “Neuronal specification in the spinal cord: inductive signals and transcriptional codes,” Nature Reviews Genetics, vol. 1, no. 1, pp. 20–29, 2000. View at Google Scholar · View at Scopus
  32. J. D. Kohtz, D. P. Baker, G. Corte, and G. Fishell, “Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to Sonic Hedgehog,” Development, vol. 125, no. 24, pp. 5079–5089, 1998. View at Google Scholar · View at Scopus
  33. J. Ericson, J. Muhr, M. Placzek, T. Lints, T. M. Jessell, and T. Edlund, “Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube,” Cell, vol. 81, no. 5, pp. 747–756, 1995. View at Google Scholar · View at Scopus
  34. C. Chiang, Y. Litingtung, E. Lee et al., “Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function,” Nature, vol. 383, no. 6599, pp. 407–413, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. Y. Ohkubo, C. Chiang, and J. L. R. Rubenstein, “Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles,” Neuroscience, vol. 111, no. 1, pp. 1–17, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Kimura, Y. Hara, T. Pineau et al., “The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary,” Genes and Development, vol. 10, no. 1, pp. 60–69, 1996. View at Google Scholar · View at Scopus
  37. L. Sussel, O. Marin, S. Kimura, and J. L. R. Rubenstein, “Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum,” Development, vol. 126, no. 15, pp. 3359–3370, 1999. View at Google Scholar · View at Scopus
  38. J. G. Corbin, N. Gaiano, R. P. Machold, A. Langston, and G. Fishell, “The Gsh2 homeodomain gene controls multiple aspects of telencephalic development,” Development, vol. 127, no. 23, pp. 5007–5020, 2000. View at Google Scholar · View at Scopus
  39. H. Toresson, S. S. Potter, and K. Campbell, “Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2,” Development, vol. 127, no. 20, pp. 4361–4371, 2000. View at Google Scholar · View at Scopus
  40. K. Yun, S. Potter, and J. L. R. Rubenstein, “Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon,” Development, vol. 128, no. 2, pp. 193–205, 2001. View at Google Scholar · View at Scopus
  41. A. Stoykova, D. Treichel, M. Hallonet, and P. Gruss, “Pax6 modulates the dorsoventral patterning of the mammalian telencephalon,” Journal of Neuroscience, vol. 20, no. 21, pp. 8042–8050, 2000. View at Google Scholar · View at Scopus
  42. S. W. Wilson and C. Houart, “Early steps in the development of the forebrain,” Developmental Cell, vol. 6, no. 2, pp. 167–181, 2004. View at Publisher · View at Google Scholar
  43. M. Rallu, R. Machold, N. Gaiano, J. G. Corbin, A. P. McMahon, and G. Fishell, “Dorsoventral patterning is established in the telencephalon of mutants lacking both Gli3 and hedgehog signaling,” Development, vol. 129, no. 21, pp. 4963–4974, 2002. View at Google Scholar
  44. V. Marigo, R. L. Johnson, A. Vortkamp, and C. J. Tabin, “Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development,” Developmental Biology, vol. 180, no. 1, pp. 273–283, 1996. View at Publisher · View at Google Scholar · View at PubMed
  45. B. Wang, J. F. Fallon, and P. A. Beachy, “Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb,” Cell, vol. 100, no. 4, pp. 423–434, 2000. View at Google Scholar
  46. C. B. Bai and A. L. Joyner, “Gli1 can rescue the in vivo function of Gli2,” Development, vol. 128, no. 24, pp. 5161–5172, 2001. View at Google Scholar
  47. P. Dai, H. Akimaru, Y. Tanaka, T. Maekawa, M. Nakafuku, and S. Ishii, “Sonic hedgehog-induced activation of the Gli1 promoter is mediated by GLI3,” Journal of Biological Chemistry, vol. 274, no. 12, pp. 8143–8152, 1999. View at Publisher · View at Google Scholar
  48. H. L. Park, C. Bai, K. A. Platt et al., “Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation,” Development, vol. 127, no. 8, pp. 1593–1605, 2000. View at Google Scholar
  49. E. A. Grove, S. Tole, J. Limon, L. W. Yip, and C. W. Ragsdale, “The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice,” Development, vol. 125, no. 12, pp. 2315–2325, 1998. View at Google Scholar
  50. T. Theil, G. Alvarez-Bolado, A. Walter, and U. Rüther, “Gli3 is required for Emx gene expression during dorsal telencephalon development,” Development, vol. 126, no. 16, pp. 3561–3571, 1999. View at Google Scholar
  51. S. Tole, C. W. Ragsdale, and E. A. Grove, “Dorsoventral patterning of the telencephalon is disrupted in the mouse mutant extra-toes,” Developmental Biology, vol. 217, no. 2, pp. 254–265, 2000. View at Publisher · View at Google Scholar · View at PubMed
  52. C. B. Bai, D. Stephen, and A. L. Joyner, “All mouse ventral spinal cord patterning by Hedgehog is Gli dependent and involves an activator function of Gli3,” Developmental Cell, vol. 6, no. 1, pp. 103–115, 2004. View at Publisher · View at Google Scholar
  53. W. Yu, Y. Wang, K. McDonnell, D. Stephen, and C. B. Bai, “Patterning of ventral telencephalon requires positive function of Gli transcription factors,” Developmental Biology, vol. 334, no. 1, pp. 264–275, 2009. View at Publisher · View at Google Scholar · View at PubMed
  54. N. Gaiano, J. D. Kohtz, D. H. Turnbull, and G. Fishell, “A method for rapid gain-of-function studies in the mouse embryonic nervous system,” Nature Neuroscience, vol. 2, no. 9, pp. 812–819, 1999. View at Publisher · View at Google Scholar · View at PubMed
  55. M. Fuccillo, M. Rallu, A. P. McMahon, and G. Fishell, “Temporal requirement for hedgehog signaling in ventral telencephalic patterning,” Development, vol. 131, no. 20, pp. 5031–5040, 2004. View at Publisher · View at Google Scholar · View at PubMed
  56. Q. Xu, C. P. Wonders, and S. A. Anderson, “Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon,” Development, vol. 132, no. 22, pp. 4987–4998, 2005. View at Publisher · View at Google Scholar · View at PubMed
  57. A. Gulacsi and S. A. Anderson, “Shh maintains Nkx2.1 in the MGE by a Gli3-independent mechanism,” Cerebral Cortex, vol. 16, pp. i89–95, 2006. View at Google Scholar
  58. M. Marklund, M. Sjödal, B. C. Beehler, T. M. Jessell, T. Edlund, and L. Gunhaga, “Retinoic acid signalling specifies intermediate character in the developing telencephalon,” Development, vol. 131, no. 17, pp. 4323–4332, 2004. View at Publisher · View at Google Scholar · View at PubMed
  59. R. A. Schneider, D. Hu, J. L. R. Rubenstein, M. Maden, and J. A. Helms, “Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH,” Development, vol. 128, no. 14, pp. 2755–2767, 2001. View at Google Scholar
  60. G. T. Haskell and A. S. LaMantia, “Retinoic acid signaling identifies a distinct precursor population in the developing and adult forebrain,” Journal of Neuroscience, vol. 25, no. 33, pp. 7636–7647, 2005. View at Publisher · View at Google Scholar · View at PubMed
  61. M. Mark, N. B. Ghyselinck, and P. Chambon, “Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis,” Annual Review of Pharmacology and Toxicology, vol. 46, pp. 451–480, 2006. View at Publisher · View at Google Scholar · View at PubMed
  62. G. Duester, “Retinoic acid synthesis and signaling during early organogenesis,” Cell, vol. 134, no. 6, pp. 921–931, 2008. View at Publisher · View at Google Scholar · View at PubMed
  63. N. Molotkova, A. Molotkov, and G. Duester, “Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone,” Developmental Biology, vol. 303, no. 2, pp. 601–610, 2007. View at Publisher · View at Google Scholar · View at PubMed
  64. C. Chatzi, T. Brade, and G. Duester, “Retinoic acid functions as a key gabaergic differentiation signal in the basal ganglia,” PLoS Biology, vol. 9, no. 4, Article ID e1000609, 2011. View at Publisher · View at Google Scholar · View at PubMed
  65. V. Dupé, N. Matt, J. M. Garnier, P. Chambon, M. Mark, and N. B. Ghyselinck, “A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14036–14041, 2003. View at Publisher · View at Google Scholar · View at PubMed
  66. H. Toresson, A. M. De Urquiza, C. Fagerström, T. Perlmann, and K. Campbell, “Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron differentiation,” Development, vol. 126, no. 6, pp. 1317–1326, 1999. View at Google Scholar
  67. W. L. Liao and F. C. Liu, “RARβ isoform-specific regulation of DARPP-32 gene expression: an ectopic expression study in the developing rat telencephalon,” European Journal of Neuroscience, vol. 21, no. 12, pp. 3262–3268, 2005. View at Publisher · View at Google Scholar · View at PubMed
  68. N. Urbán, R. Martín-Ibáñez, C. Herranz et al., “Nolz1 promotes striatal neurogenesis through the regulation of retinoic acid signaling,” Neural Development, vol. 5, no. 1, article 21, 2010. View at Publisher · View at Google Scholar · View at PubMed
  69. A. K. Verma, A. Shoemaker, R. Simsiman, M. Denning, and R. D. Zachman, “Expression of retinoic acid nuclear receptors and tissue transglutaminase is altered in various tissues of rats fed a vitamin A-deficient diet,” Journal of Nutrition, vol. 122, no. 11, pp. 2144–2152, 1992. View at Google Scholar
  70. C. Houart, L. Caneparo, C. P. Heisenberg, K. A. Barth, M. Take-Uchi, and S. W. Wilson, “Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling,” Neuron, vol. 35, no. 2, pp. 255–265, 2002. View at Publisher · View at Google Scholar
  71. L. Gunhaga, M. Marklund, M. Sjödal, J. C. Hsieh, T. M. Jessell, and T. Edlund, “Specification of dorsal telencephalic character by sequential Wnt and FGF signaling,” Nature Neuroscience, vol. 6, no. 7, pp. 701–707, 2003. View at Publisher · View at Google Scholar · View at PubMed
  72. S. Maretto, M. Cordenonsi, S. Dupont et al., “Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3299–3304, 2003. View at Publisher · View at Google Scholar · View at PubMed
  73. M. Backman, O. Machon, L. Mygland et al., “Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon,” Developmental Biology, vol. 279, no. 1, pp. 155–168, 2005. View at Publisher · View at Google Scholar · View at PubMed
  74. Y. Furuta, D. W. Piston, and B. L. M. Hogan, “Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development,” Development, vol. 124, no. 11, pp. 2203–2212, 1997. View at Google Scholar · View at Scopus
  75. J. A. Golden, A. Bracilovic, K. A. Mcfadden, J. S. Beesley, J. L. R. Rubenstein, and J. B. Grinspan, “Ectopic bone morphogenetic proteins 5 and 4 in the chicken forebrain lead to cyclopia and holoprosencephaly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 2439–2444, 1999. View at Publisher · View at Google Scholar · View at Scopus
  76. E. S. Monuki, F. D. Porter, and C. A. Walsh, “Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-lhx2 pathway,” Neuron, vol. 32, no. 4, pp. 591–604, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. R. M. Anderson, A. R. Lawrence, R. W. Stottmann, D. Bachiller, and J. Klingensmith, “Chordin and noggin promote organizing centers of forebrain development in the mouse,” Development, vol. 129, no. 21, pp. 4975–4987, 2002. View at Google Scholar · View at Scopus
  78. W. Tao and E. Lai, “Telencephalon-restricted expression of BF-1, a new member of the HNF- 3/fork head gene family, in the developing rat brain,” Neuron, vol. 8, no. 5, pp. 957–966, 1992. View at Publisher · View at Google Scholar · View at Scopus
  79. J. M. Hébert and S. K. McConnell, “Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures,” Developmental Biology, vol. 222, no. 2, pp. 296–306, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. S. Xuan, C. A. Baptista, G. Balas, W. Tao, V. C. Soares, and E. Lai, “Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres,” Neuron, vol. 14, no. 6, pp. 1141–1152, 1995. View at Google Scholar · View at Scopus
  81. B. Martynoga, H. Morrison, D. J. Price, and J. O. Mason, “Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis,” Developmental Biology, vol. 283, no. 1, pp. 113–127, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. C. Danesin, J. N. Peres, M. Johansson et al., “Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1,” Developmental Cell, vol. 16, no. 4, pp. 576–587, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. M. N. Manuel, B. Martynoga, M. D. Molinek et al., “The transcription factor Foxg1 regulates telencephalic progenitor proliferation cell autonomously, in part by controlling Pax6 expression levels,” Neural Development, vol. 6, no. 1, article 9, 2011. View at Publisher · View at Google Scholar · View at PubMed
  84. C. Schuurmans and F. Guillemot, “Molecular mechanisms underlying cell fate specification in the developing telencephalon,” Current Opinion in Neurobiology, vol. 12, no. 1, pp. 26–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. C. Fode, Q. Ma, S. Casarosa, S. L. Ang, D. J. Anderson, and F. Guillemot, “A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons,” Genes and Development, vol. 14, no. 1, pp. 67–80, 2000. View at Google Scholar · View at Scopus
  86. H. M. Hsieh-Li, D. P. Witte, J. C. Szucsik, M. Weinstein, H. Li, and S. S. Potter, “Gsh-2, a murine homeobox gene expressed in the developing brain,” Mechanisms of Development, vol. 50, no. 2-3, pp. 177–186, 1995. View at Publisher · View at Google Scholar · View at Scopus
  87. J. M. Hébert and G. Fishell, “The genetics of early telencephalon patterning: some assembly required,” Nature Reviews Neuroscience, vol. 9, no. 9, pp. 678–685, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. R. E. Hill, J. Favor, B. L. M. Hogan et al., “Mouse small eye results from mutations in a paired-like homeobox-containing gene,” Nature, vol. 354, no. 6354, pp. 522–525, 1991. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. A. Stoykova and P. Gruss, “Roles of Pax-genes in developing and adult brain as suggested by expression patterns,” Journal of Neuroscience, vol. 14, no. 3, pp. 1395–1412, 1994. View at Google Scholar · View at Scopus
  90. P. H. Crossley, S. Martinez, Y. Ohkubo, and J. L. R. Rubenstein, “Coordinate expression of Fgf8, Otx2, Bmp4, and Shh in the rostral prosencephalon during development of the telencephalic and optic vesicles,” Neuroscience, vol. 108, no. 2, pp. 183–206, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Stoykova, M. Götz, P. Gruss, and J. Price, “Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain,” Development, vol. 124, no. 19, pp. 3765–3777, 1997. View at Google Scholar · View at Scopus
  92. A. Stoykova, R. Fritsch, C. Walther, and P. Gruss, “Forebrain patterning defects in small eye mutant mice,” Development, vol. 122, no. 11, pp. 3453–3465, 1996. View at Google Scholar · View at Scopus
  93. J. C. Szucsik, D. P. Witte, H. Li, S. K. Pixley, K. M. Small, and S. S. Potter, “Altered forebrain and hindbrain development in mice mutant for the Gsh- 2 homeobox gene,” Developmental Biology, vol. 191, no. 2, pp. 230–242, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. B. Wang, R. R. Waclaw, Z. J. Allen, F. Guillemot, and K. Campbell, “Ascl1 is a required downstream effector of Gsx gene function in the embryonic mouse telencephalon,” Neural Development, vol. 4, no. 1, article 5, 2009. View at Publisher · View at Google Scholar · View at PubMed
  95. R. M. Wang, Q. G. Zhang, J. Li, L. C. Yang, F. Yang, and D. W. Brann, “The ERK5-MEF2C transcription factor pathway contributes to anti-apoptotic effect of cerebral ischemia preconditioning in the hippocampal CA1 region of rats,” Brain Research, vol. 1255, no. C, pp. 32–41, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. M. T. Valerius, H. Li, J. L. Stock et al., “Gsh-l: a novel murine homeobox gene expressed in the central nervous system,” Developmental Dynamics, vol. 203, no. 3, pp. 337–351, 1995. View at Google Scholar · View at Scopus
  97. H. Toresson and K. Campbell, “A role Gsh1 in the developing striatum and olfactory bulb of Gsh2 mutant mice,” Development, vol. 128, no. 23, pp. 4769–4780, 2001. View at Google Scholar · View at Scopus
  98. K. Yun, S. Garel, S. Fischman, and J. L. R. Rubenstein, “Patterning of the lateral ganglionic eminence by the Gsh1 and Gsh2 homeobox genes regulates striatal and olfactory bulb histogenesis and the growth of axons through the basal ganglia,” Journal of Comparative Neurology, vol. 461, no. 2, pp. 151–165, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. Z. Pei, B. Wang, G. Chen, M. Nagao, M. Nakafuku, and K. Campbell, “Homeobox genes Gsx1 and Gsx2 differentially regulate telencephalic progenitor maturation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 4, pp. 1675–1680, 2011. View at Publisher · View at Google Scholar · View at PubMed
  100. S. Casarosa, C. Fode, and F. Guillemot, “Mash1 regulates neurogenesis in the ventral telencephalon,” Development, vol. 126, no. 3, pp. 525–534, 1999. View at Google Scholar · View at Scopus
  101. M. H. Porteus, A. Bulfone, J. K. Liu, L. Puelles, L. C. Lo, and J. L. R. Rubenstein, “DLX-2, MASH-1, and MAP-2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain,” Journal of Neuroscience, vol. 14, no. 11 I, pp. 6370–6383, 1994. View at Google Scholar · View at Scopus
  102. O. Marín, S. A. Anderson, and J. L. R. Rubenstein, “Origin and molecular specification of striatal interneurons,” Journal of Neuroscience, vol. 20, no. 16, pp. 6063–6076, 2000. View at Google Scholar · View at Scopus
  103. D. S. Castro, B. Martynoga, C. Parras et al., “A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets,” Genes and Development, vol. 25, no. 9, pp. 930–945, 2011. View at Publisher · View at Google Scholar · View at PubMed
  104. K. Yun, S. Fischman, J. Johnson, M. Hrabe de Angelis, G. Weinsmaster, and J. L. R. Rubenstein, “Modulation of the notch signalling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon,” Development, vol. 129, no. 21, pp. 5029–5040, 2002. View at Google Scholar · View at Scopus
  105. J. K. Liu, I. Ghattas, S. Liu, S. Chen, and J. L. R. Rubenstein, “Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation,” Developmental Dynamics, vol. 210, no. 4, pp. 498–512, 1997. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Nery, H. Wichterle, and G. Fishell, “Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain,” Development, vol. 128, no. 4, pp. 527–540, 2001. View at Google Scholar · View at Scopus
  107. J. E. Long, C. Swan, W. S. Liang, I. Cobos, G. B. Potter, and J. L.R. Rubenstein, “Dlx1&2 and Mash1 transcription factors control striatal patterning and differentiation through parallel and overlapping pathways,” Journal of Comparative Neurology, vol. 512, no. 4, pp. 556–572, 2009. View at Publisher · View at Google Scholar · View at PubMed
  108. J. E. Long, S. Garel, M. Alvarez-Dolado et al., “Dlx-dependent and -independent regulation of olfactory bulb interneuron differentiation,” Journal of Neuroscience, vol. 27, no. 12, pp. 3230–3243, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. T. Kuwajima, I. Nishimura, and K. Yoshikawa, “Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins,” Journal of Neuroscience, vol. 26, no. 20, pp. 5383–5392, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. P. Jay, C. Rougeulle, A. Massacrier et al., “The human NECDIN gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region,” Nature Genetics, vol. 17, no. 3, pp. 357–361, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. H. R. MacDonald and R. Wevrick, “The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse,” Human Molecular Genetics, vol. 6, no. 11, pp. 1873–1878, 1997. View at Publisher · View at Google Scholar · View at Scopus
  112. P. Arlotta, B. J. Molyneaux, J. Chen, J. Inoue, R. Kominami, and J. D. MacKlis, “Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo,” Neuron, vol. 45, no. 2, pp. 207–221, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. R. Martín-Ibáñez, E. Crespo, N. Urbán et al., “Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons,” Journal of Comparative Neurology, vol. 518, no. 3, pp. 329–351, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. S. Tamura, Y. Morikawa, H. Iwanishi, T. Hisaoka, and E. Senba, “Foxp1 gene expression in projection neurons of the mouse striatum,” Neuroscience, vol. 124, no. 2, pp. 261–267, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus