Table of Contents Author Guidelines Submit a Manuscript
Anatomy Research International
Volume 2012, Article ID 948704, 5 pages
http://dx.doi.org/10.1155/2012/948704
Review Article

Ultrahigh Voltage Electron Microscopy Links Neuroanatomy and Neuroscience/Neuroendocrinology

1Laboratory of Neuroendocrinology, Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Kashino, Ushimado, Setouchi, Okayama 701-4303, Japan
2Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan

Received 26 April 2011; Accepted 15 September 2011

Academic Editor: Ilkan Tatar

Copyright © 2012 Hirotaka Sakamoto and Mitsuhiro Kawata. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Miyawaki, “Fluorescence imaging of physiological activity in complex systems using GFP-based probes,” Current Opinion in Neurobiology, vol. 13, no. 5, pp. 591–596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Nishi and M. Kawata, “Brain corticosteroid receptor dynamics and trafficking: implications from live cell imaging,” The Neuroscientist, vol. 12, no. 2, pp. 119–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. P. V. Belichenko and A. Dahlström, “Studies on the 3-dimensional architecture of dendritic spines and varicosities in human cortex by confocal laser scanning microscopy and Lucifer Yellow microinjections,” Journal of Neuroscience Methods, vol. 57, no. 1, pp. 55–61, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Ebara, K. Kumamoto, K. I. Baumann, and Z. Halata, “Three-dimensional analyses of touch domes in the hairy skin of the cat paw reveal morphological substrates for complex sensory processing,” Neuroscience Research, vol. 61, no. 2, pp. 159–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Mukai, T. Kimoto, Y. Hojo et al., “Modulation of synaptic plasticity by brain estrogen in the hippocampus,” Biochimica et Biophysica Acta, vol. 1800, no. 10, pp. 1030–1044, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Cui, H. Sakamoto, S. Higashi, and M. Kawata, “Effects of single-prolonged stress on neurons and their afferent inputs in the amygdala,” Neuroscience, vol. 152, no. 3, pp. 703–712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Hama and T. Kosaka, “Neurobiological applications of high voltage electron microscopy,” Trends in Neurosciences, vol. 4, no. C, pp. 193–196, 1981. View at Google Scholar · View at Scopus
  8. H. Sakamoto, T. Arii, and M. Kawata, “High-voltage electron microscopy reveals direct synaptic inputs from a spinal gastrin-releasing peptide system to neurons of the spinal nucleus of bulbocavernosus,” Endocrinology, vol. 151, no. 1, pp. 417–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Sakamoto, “The gastrin-releasing peptide system in the spinal cord mediates masculine sexual function,” Anatomical Science International, vol. 86, no. 1, pp. 19–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. R. Cajal, Histologie du Systeme Nerveux de l'Homme et des Vertebres, Instituto Ramon y Cajal, Madrid, Spain, 1972.
  11. T. Kosaka and K. Hama, “Three-dimensional structure of astrocytes in the rat dentate gyrus,” Journal of Comparative Neurology, vol. 249, no. 2, pp. 242–260, 1986. View at Google Scholar · View at Scopus
  12. B. S. Shankaranarayana Rao, Govindaiah, T. R. Laxmi, B. L. Meti, and T. R. Raju, “Subicular lesions cause dendritic atrophy in CA1 and CA3 pyramidal neurons of the rat hippocampus,” Neuroscience, vol. 102, no. 2, pp. 319–327, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. U. Tauer, B. Volk, and B. Heimrich, “Differentiation of Purkinje cells in cerebellar slice cultures: an immunocytochemical and Golgi EM study,” Neuropathology and Applied Neurobiology, vol. 22, no. 4, pp. 361–369, 1996. View at Google Scholar · View at Scopus
  14. M. Sojka, H. A. Davies, D. A. Rusakov, and M. G. Stewart, “3-Dimensional morphometry of intact dendritic spines observed in thick sections using an electron microscope,” Journal of Neuroscience Methods, vol. 62, no. 1-2, pp. 73–82, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Paxinos, The Rat Nervous System, Academic Press, San Diego, Calif, USA, 3rd edition, 2004.
  16. E. G. Gray, “Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study,” Journal of Anatomy, vol. 93, pp. 420–433, 1959. View at Google Scholar · View at Scopus
  17. M. Segal, E. Korkotian, and D. D. Murphy, “Dendritic spine formation and pruning: common cellular mechanisms?” Trends in Neurosciences, vol. 23, no. 2, pp. 53–57, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Onufrowicz, “Notes on the arrangement and function of the cell groups in the sacral region of the spinal cord,” Journal of Nervous and Mental Disease, vol. 26, pp. 498–504, 1899. View at Google Scholar
  19. S. Nakagawa, “Onuf's nucleus of the sacral cord in a south American monkey (Saimiri): Its location and bilateral cortical input from area 4,” Brain Research, vol. 191, no. 2, pp. 337–344, 1980. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Sato, N. Mizuno, and A. Konishi, “Localization of motoneurons innervating perineal muscles: a HRP study in cat,” Brain Research, vol. 140, no. 1, pp. 149–154, 1978. View at Publisher · View at Google Scholar · View at Scopus
  21. N. G. Forger and S. M. Breedlove, “Sexual dimorphism in human and canine spinal cord: role of early androgen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 19, pp. 7527–7531, 1986. View at Google Scholar · View at Scopus
  22. S. M. Breedlove and A. P. Arnold, “Hormone accumulation in a sexually dimorphic motor nucleus of the rat spinal cord,” Science, vol. 210, no. 4469, pp. 564–566, 1980. View at Google Scholar · View at Scopus
  23. D. R. Sengelaub and N. G. Forger, “The spinal nucleus of the bulbocavernosus: firsts in androgen-dependent neural sex differences,” Hormones and Behavior, vol. 53, no. 5, pp. 596–612, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Kojima, Y. Takeuchi, M. Goto, and Y. Sano, “Immunohistochemical study on the localization of serotonin fibers and terminals in the spinal cord of the monkey (Macaca fuscata),” Cell and Tissue Research, vol. 229, no. 1, pp. 23–36, 1983. View at Google Scholar · View at Scopus
  25. M. Kojima and Y. Sano, “Sexual differences in the topographical distribution of serotonergic fibers in the anterior column of rat lumbar spinal cord,” Anatomy and Embryology, vol. 170, no. 2, pp. 117–121, 1984. View at Google Scholar · View at Scopus
  26. M. Kojima, T. Matsuura, H. Kimura, Y. Nojyo, and Y. Sano, “Fluorescence histochemical study on the noradrenergic control to the anterior column of the spinal lumbosacral segments of the rat and dog, with special reference to motoneurons innervating the perineal striated muscles (Onuf's nucleus),” Histochemistry, vol. 81, no. 3, pp. 237–241, 1984. View at Google Scholar · View at Scopus
  27. S. M. Breedlove and A. P. Arnold, “Hormonal control of a developing neuromuscular system. I. Complete demasculinization of the male rat spinal nucleus of the bulbocavernosus using the anti-androgen flutamide,” Journal of Neuroscience, vol. 3, no. 2, pp. 417–423, 1983. View at Google Scholar · View at Scopus
  28. S. M. Breedlove and A. P. Arnold, “Hormonal control of a developing neuromuscular system. II. Sensitive periods for the androgen-induced masculinization of the rat spinal nucleus of the bulbocavernosus,” Journal of Neuroscience, vol. 3, no. 2, pp. 424–432, 1983. View at Google Scholar · View at Scopus
  29. H. Sakamoto, K. I. Matsuda, D. G. Zuloaga et al., “Sexually dimorphic gastrin releasing peptide system in the spinal cord controls male reproductive functions,” Nature Neuroscience, vol. 11, no. 6, pp. 634–636, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Sakamoto and M. Kawata, “Gastrin-releasing peptide system in the spinal cord controls male sexual behaviour,” Journal of Neuroendocrinology, vol. 21, no. 4, pp. 432–435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Sakamoto, K. Takanami, D. G. Zuloaga et al., “Androgen regulates the sexually dimorphic gastrin-releasing peptide system in the lumbar spinal cord that mediates male sexual function,” Endocrinology, vol. 150, no. 8, pp. 3672–3679, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. J. L. van der Want, J. Klooster, B. Nunes Cardozo, H. De Weerd, and R. S. B. Liem, “Tract-tracing in the nervous system of vertebrates using horseradish peroxidase and its conjugates: tracers, chromogens and stabilization for light and electron microscopy,” Brain Research Protocols, vol. 1, no. 3, pp. 269–279, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Sakamoto, K. I. Matsuda, D. G. Zuloaga et al., “Stress affects a gastrin-releasing peptide system in the spinal cord that mediates sexual function: implications for psychogenic erectile dysfunction,” PLoS ONE, vol. 4, no. 1, Article ID e4276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Peters, S. L. Palay, and H. F. Webster, The Fine Structure of the Nervous System, Oxford University Press, New York, NY, USA, 3rd edition, 1990.
  35. A. Matsumoto, P. E. Micevych, and A. P. Arnold, “Androgen regulates synaptic input to motoneurons of the adult rat spinal cord,” Journal of Neuroscience, vol. 8, no. 11, pp. 4168–4176, 1988. View at Google Scholar · View at Scopus
  36. B. D. Sachs, “Role of striated penile muscles in penile reflexes, copulation, and induction of pregnancy in the rat,” Journal of Reproduction and Fertility, vol. 66, no. 2, pp. 433–443, 1982. View at Google Scholar · View at Scopus