Table of Contents Author Guidelines Submit a Manuscript
Autism Research and Treatment
Volume 2011, Article ID 398636, 16 pages
http://dx.doi.org/10.1155/2011/398636
Review Article

The Molecular Genetics of Autism Spectrum Disorders: Genomic Mechanisms, Neuroimmunopathology, and Clinical Implications

Veterinary and Comparative Anatomy Physiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA

Received 15 August 2010; Accepted 29 March 2011

Academic Editor: David Posey

Copyright © 2011 Daniel J. Guerra. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. M. Morrow, S. Y. Yoo, S. W. Flavell et al., “Identifying autism loci and genes by tracing recent shared ancestry,” Science, vol. 321, no. 5886, pp. 218–223, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. M. Takatalo, E. Järvinen, S. Laitinen, I. Thesleff, and R. Rönnholm, “Expression of the novel Golgi protein GoPro49 is developmentally regulated during mesenchymal differentiation,” Developmental Dynamics, vol. 237, no. 8, pp. 2243–2255, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. R. Etherton, C. A. Blaiss, C. M. Powell, and T. C. Südhof, “Mouse neurexin-1α deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 42, pp. 17998–18003, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. A. Bottos, E. Destro, A. Rissone et al., “The synaptic proteins neurexins and neuroligins are widely expressed in the vascular system and contribute to its functions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 49, pp. 20782–20787, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. T. J. Siddiqui, R. Pancaroglu, Y. Kang, A. Rooyakkers, and A. M. Craig, “LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development,” Journal of Neuroscience, vol. 30, no. 22, pp. 7495–7506, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. S. B. Cheng, S. A. Amici, X. Q. Ren et al., “Presynaptic targeting of α4β2 nicotinic acetylcholine receptors is regulated by neurexin-1β,” Journal of Biological Chemistry, vol. 284, no. 35, pp. 23251–23259, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. L. R. Rubenstein and M. M. Merzenich, “Model of autism: increased ratio of excitation/inhibition in key neural systems,” Genes, Brain and Behavior, vol. 2, no. 5, pp. 255–267, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Miller, D. Comoletti, J. Wilson, T. Nakagawa, and P. Taylor, “Structural characterization of the extracellular domain of alpha-neurexin:insights into synapse assembly,” The FASEB Journal, vol. 23, pp. 703–718, 2009. View at Google Scholar
  9. N. R. Gough, “Focus issue: teaching tools and learning opportunities,” Science Signaling, vol. 3, no. 119, p. 3, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. K. Hynes, P. Tarpey, L. M. Dibbens et al., “Epilepsy and mental retardation limited to females with PCDH19 mutations can present de novo or in single generation families,” Medical Genetics, vol. 47, no. 3, pp. 211–216, 2010. View at Google Scholar
  11. M. Piper, A. Dwivedy, L. Leung, R. S. Bradley, and C. E. Holt, “NF-protocadherin and TAF1 regulate retinal axon initiation and elongation in vivo,” Journal of Neuroscience, vol. 28, no. 1, pp. 100–105, 2008. View at Publisher · View at Google Scholar · View at PubMed
  12. C. A. Baron, C. G. Tepper, S. Y. Liu et al., “Genomic and functional profiling of duplicated chromosome 15 cell lines reveal regulatory alterations in UBE3A-associated ubiquitin-proteasome pathway processes,” Human Molecular Genetics, vol. 15, no. 6, pp. 853–869, 2006. View at Publisher · View at Google Scholar · View at PubMed
  13. S. V. Dindot, B. A. Antalffy, M. B. Bhattacharjee, and A. L. Beaudet, “The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology,” Human Molecular Genetics, vol. 17, no. 1, pp. 111–118, 2008. View at Publisher · View at Google Scholar · View at PubMed
  14. Y. Takano, S. Adachi, M. Okuno et al., “The RING finger protein, RNF8, interacts with retinoid X receptor alpha and enhances its transcription-stimulating activity,” Journal of Biological Chemistry, vol. 279, no. 18, pp. 18926–18934, 2004. View at Publisher · View at Google Scholar · View at PubMed
  15. W. Bi, J. Yan, X. Shi et al., “Rai1 deficiency in mice causes learning impairment and motor dysfunction, whereas Rai1 heterozygous mice display minimal behavioral phenotypes,” Human Molecular Genetics, vol. 16, no. 15, pp. 1802–1813, 2007. View at Publisher · View at Google Scholar · View at PubMed
  16. M. Sheng, “The postsynaptic NMDA-receptor-PSD-95 signaling complex in excitatory synapses of the brain,” Journal of Cell Science, vol. 114, no. 7, pp. 1251–1252, 2001. View at Google Scholar
  17. A. Quitsch, K. Berhörster, W. L. Chong, D. Richter, and H. J. Kreienkamp, “Postsynaptic shank antagonizes dendrite branching induced by the leucine-rich repeat protein Densin-180,” Journal of Neuroscience, vol. 25, no. 2, pp. 479–487, 2005. View at Publisher · View at Google Scholar · View at PubMed
  18. E. Park, N. Moonseok, J. Choi et al., “The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the βPIX guanine nucleotide exchange factor for Rac1 and Cdc42,” Journal of Biological Chemistry, vol. 278, no. 21, pp. 19220–19229, 2003. View at Publisher · View at Google Scholar · View at PubMed
  19. G. Roussignol, F. Ango, S. Romorini et al., “Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons,” Journal of Neuroscience, vol. 25, no. 14, pp. 3560–3570, 2005. View at Publisher · View at Google Scholar · View at PubMed
  20. M. Sheng and E. Kim, “The Shank family of scaffold proteins,” Journal of Cell Science, vol. 113, no. 11, pp. 1851–1856, 2000. View at Google Scholar
  21. J. Grembecka, T. Cierpicki, Y. Devedjiev et al., “The binding of the PDZ tandem of syntenin to target proteins,” Biochemistry, vol. 45, no. 11, pp. 3674–3683, 2006. View at Publisher · View at Google Scholar · View at PubMed
  22. O. Sakarya, C. Conaco, O. Eǧecioǧlu, S. A. Solla, T. H. Oakley, and K. S. Kosik, “Evolutionary expansion and specialization of the PDZ domains,” Molecular Biology and Evolution, vol. 27, no. 5, pp. 1058–1069, 2010. View at Publisher · View at Google Scholar · View at PubMed
  23. M. Wiznitzer, “Autism and tuberous sclerosis,” Journal of Child Neurology, vol. 19, no. 9, pp. 675–679, 2004. View at Google Scholar
  24. A. Di Nardo, I. Kramvis, N. Cho et al., “Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner,” Journal of Neuroscience, vol. 29, no. 18, pp. 5926–5937, 2009. View at Publisher · View at Google Scholar · View at PubMed
  25. B. C. Mak, H. L. Kenerson, L. D. Aicher, E. A. Barnes, and R. S. Yeung, “Aberrant β-catenin signaling in tuberous sclerosis,” American Journal of Pathology, vol. 167, no. 1, pp. 107–116, 2005. View at Google Scholar
  26. Q. Du, X. Zhang, J. Cardinal et al., “Wnt/β-catenin signaling regulates cytokine-induced human inducible nitric oxide synthase expression by inhibiting nuclear factor-κb activation in cancer cells,” Cancer Research, vol. 69, no. 9, pp. 3764–3771, 2009. View at Publisher · View at Google Scholar · View at PubMed
  27. S. H. Fatemi, “Reelin glycoprotein: structure, biology and roles in health and disease,” Molecular Psychiatry, vol. 10, no. 3, pp. 251–257, 2005. View at Publisher · View at Google Scholar · View at PubMed
  28. S. H. Fatemi, “The role of Reelin in pathology of autism,” Molecular Psychiatry, vol. 7, no. 9, pp. 919–920, 2002. View at Publisher · View at Google Scholar · View at PubMed
  29. S. L. Connors, K. J. Matteson, G. A. Sega, C. B. Lozzio, R. C. Carroll, and A. W. Zimmerman, “Plasma serotonin in autism,” Pediatric Neurology, vol. 35, no. 3, pp. 182–186, 2006. View at Publisher · View at Google Scholar · View at PubMed
  30. J. Veenstra-VanderWeele, S. J. Kim, C. Lord et al., “Transmission disequilibrium studies of the serotonin 5-HT receptor gene (HTR2A) in autism,” American Journal of Medical Genetics, vol. 114, no. 3, pp. 277–283, 2002. View at Publisher · View at Google Scholar · View at PubMed
  31. D. G. M. Murphy, E. Daly, N. Schmitz et al., “Cortical serotonin 5-HT receptor binding and social communication in adults with Asperger's syndrome: an in vivo SPECT study,” American Journal of Psychiatry, vol. 163, no. 5, pp. 934–936, 2006. View at Publisher · View at Google Scholar · View at PubMed
  32. T. Webb and F. Latif, “Rett syndrome and the MECP2 gene,” Journal of Medical Genetics, vol. 38, no. 4, pp. 217–223, 2001. View at Google Scholar
  33. M. D. Shahbazian and H. Y. Zoghbi, “Rett syndrome and MeCP2: linking epigenetics and neuronal function,” American Journal of Human Genetics, vol. 71, no. 6, pp. 1259–1272, 2002. View at Publisher · View at Google Scholar · View at PubMed
  34. S. Bapat and S. Galande, “Association by guilt: identification of DLX5 as a target for MeCP2 provides a molecular link between genomic imprinting and Rett syndrome,” BioEssays, vol. 27, no. 7, pp. 676–680, 2005. View at Publisher · View at Google Scholar · View at PubMed
  35. R. P. Ghosh, R. A. Horowitz-Scherer, T. Nikitina, L. M. Gierasch, and C. L. Woodcock, “Rett syndrome-causing mutations in human MeCP2 result in diverse structural changes that impact folding and DNA interactions,” Journal of Biological Chemistry, vol. 283, no. 29, pp. 20523–20534, 2008. View at Publisher · View at Google Scholar · View at PubMed
  36. S. Girard, L. Tremblay, M. Lepage, and G. Sébire, “IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation,” Journal of Immunology, vol. 184, no. 7, pp. 3997–4005, 2010. View at Publisher · View at Google Scholar · View at PubMed
  37. N. Fendri-Kriaa, E. Mkaouar-Rebai, D. Moalla et al., “Mutational analysis of the MECP2 gene in tunisian patients with rett syndrome: a novel double mutation,” Journal of Child Neurology, vol. 25, no. 8, pp. 1042–1046, 2010. View at Publisher · View at Google Scholar · View at PubMed
  38. L. Rusconi, L. Salvatoni, L. Giudici et al., “CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C-terminal tail,” Journal of Biological Chemistry, vol. 283, no. 44, pp. 30101–30111, 2008. View at Publisher · View at Google Scholar · View at PubMed
  39. R. C. Samaco, R. P. Nagarajan, D. Braunschweig, and J. M. LaSalle, “Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders,” Human Molecular Genetics, vol. 13, no. 6, pp. 629–639, 2004. View at Publisher · View at Google Scholar · View at PubMed
  40. Z. W. Zhang, J. D. Zak, and H. Liu, “MeCP2 is required for normal development of GABAergic circuits in the thalamus,” Journal of Neurophysiology, vol. 103, no. 5, pp. 2470–2481, 2010. View at Publisher · View at Google Scholar · View at PubMed
  41. L. Abuhatzira, R. Shemer, and A. Razin, “MeCP2 involvement in the regulation of neuronal α-tubulin production,” Human Molecular Genetics, vol. 18, no. 8, pp. 1415–1423, 2009. View at Publisher · View at Google Scholar · View at PubMed
  42. Genetics Home Reference, 2010, http://ghr.nlm.nih.gov/.
  43. J. Schütt, K. Falley, D. Richter, H. J. Kreienkamp, and S. Kindler, “Fragile X mental retardation protein regulates the levels of scaffold proteins and glutamate receptors in postsynaptic densities,” Journal of Biological Chemistry, vol. 284, no. 38, pp. 25479–25487, 2009. View at Publisher · View at Google Scholar · View at PubMed
  44. H. Wang, S. S. Kim, and M. Zhuo, “Roles of fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent α-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization,” Journal of Biological Chemistry, vol. 285, no. 28, pp. 21888–21901, 2010. View at Publisher · View at Google Scholar · View at PubMed
  45. I. Makkonen, R. Riikonen, H. Kokki, M. M. Airaksinen, and J. T. Kuikka, “Serotonin and dopamine transporter binding in children with autism determined by SPECT,” Developmental Medicine and Child Neurology, vol. 50, no. 8, pp. 593–597, 2008. View at Publisher · View at Google Scholar · View at PubMed
  46. A. Sharma, C. A. Hoeffer, Y. Takayasu et al., “Dysregulation of mTOR signaling in fragile X syndrome,” Journal of Neuroscience, vol. 30, no. 2, pp. 694–702, 2010. View at Publisher · View at Google Scholar · View at PubMed
  47. J. A. S. Vorstman, W. G. Staal, E. Van Daalen, H. Van Engeland, P. F. R. Hochstenbach, and L. Franke, “Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism,” Molecular Psychiatry, vol. 11, no. 1, pp. 18–28, 2006. View at Publisher · View at Google Scholar · View at PubMed
  48. J. Veenstra-VanderWeele, S. L. Christian, and E. H. Cook, “Autism as a paradigmatic complex genetic disorder,” Annual Review of Genomics and Human Genetics, vol. 5, pp. 379–405, 2004. View at Publisher · View at Google Scholar · View at PubMed
  49. A. Guilmatre, C. Dubourg, A. L. Mosca et al., “Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation,” Archives of General Psychiatry, vol. 66, no. 9, pp. 947–956, 2009. View at Publisher · View at Google Scholar · View at PubMed
  50. J. Sebat, B. Lakshmi, D. Malhotra et al., “Strong association of de novo copy number mutations with autism,” Science, vol. 316, no. 5823, pp. 445–449, 2007. View at Publisher · View at Google Scholar · View at PubMed
  51. L. Sztriha and A. L. Betz, “Oleic acid reversibly opens the blood-brain barrier,” Brain Research, vol. 550, no. 2, pp. 257–262, 1991. View at Publisher · View at Google Scholar
  52. R. A. Kumar, J. Sudi, T. D. Babatz et al., “A de novo 1p34.2 microdeletion identifies the synaptic vesicle gene RIMS3 as a novel candidate for autism,” Journal of Medical Genetics, vol. 47, no. 2, pp. 81–90, 2010. View at Publisher · View at Google Scholar · View at PubMed
  53. J. Weidenhofer, R. J. Scott, and P. A. Tooney, “Investigation of the expression of genes affecting cytomatrix active zone function in the amygdala in schizophrenia: effects of antipsychotic drugs,” Journal of Psychiatric Research, vol. 43, no. 3, pp. 282–290, 2009. View at Publisher · View at Google Scholar · View at PubMed
  54. C. R. Marshall, A. Noor, J. B. Vincent et al., “Structural variation of chromosomes in autism spectrum disorder,” American Journal of Human Genetics, vol. 82, no. 2, pp. 477–488, 2008. View at Publisher · View at Google Scholar · View at PubMed
  55. R. A. Kumar, S. Mohamed, J. Sudi et al., “Recurrent 16p11.2 microdeletions in autism,” Human Molecular Genetics, vol. 17, no. 4, pp. 628–638, 2008. View at Publisher · View at Google Scholar · View at PubMed
  56. R. A. Kumar, C. R. Marshall, J. A. Badner et al., “Association and mutation analyses of 16p11.2 autism candidate genes,” PLoS ONE, vol. 4, no. 2, p. e4582, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. L. Duret and N. Galtier, “Biased gene conversion and the evolution of mammalian genomic landscapes,” Annual Review of Genomics and Human Genetics, vol. 10, pp. 285–311, 2009. View at Publisher · View at Google Scholar · View at PubMed
  58. L. A. Weiss, Y. Shen, J. M. Korn et al., “Association between microdeletion and microduplication at 16p11.2 and autism,” New England Journal of Medicine, vol. 358, no. 7, pp. 667–675, 2008. View at Publisher · View at Google Scholar · View at PubMed
  59. C. L. Martin and D. H. Ledbetter, “Autism and cytogenetic abnormalities: solving autism one chromosome at a time,” Current Psychiatry Reports, vol. 9, no. 2, pp. 141–147, 2007. View at Google Scholar
  60. T. D. Babatz, R. A. Kumar, J. Sudi, W. B. Dobyns, and S. L. Christian, “Copy number and sequence variants implicate APBA2 as an autism candidate gene,” Autism Research, vol. 2, no. 6, pp. 359–364, 2009. View at Publisher · View at Google Scholar · View at PubMed
  61. B. van der Zwaag, L. Franke, M. Poot et al., “Gene-network analysis identifies susceptibility genes related to glycobiology in autism,” PLoS ONE, vol. 4, no. 5, Article ID e5324, 2009. View at Publisher · View at Google Scholar · View at PubMed
  62. S. Kunz, J. M. Rojek, M. Kanagawa et al., “Posttranslational modification of α-dystroglycan, the cellular receptor for arenaviruses, by the glycosyltransferase LARGE is critical for virus binding,” Journal of Virology, vol. 79, no. 22, pp. 14282–14296, 2005. View at Publisher · View at Google Scholar · View at PubMed
  63. X. Bao, M. Kobayashi, S. Hatakeyama et al., “Tumor suppressor function of laminin-binding α-dystroglycan requires a distinct β3-N-acetylglucosaminyltransferase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 29, pp. 12109–12114, 2009. View at Publisher · View at Google Scholar · View at PubMed
  64. P. Liu, M. Jamaluddin, K. Li, R. P. Garofalo, A. Casola, and A. R. Brasier, “Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells,” Journal of Virology, vol. 81, no. 3, pp. 1401–1411, 2007. View at Publisher · View at Google Scholar · View at PubMed
  65. R. Lin, L. Yang, P. Nakhaei et al., “Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20,” Journal of Biological Chemistry, vol. 281, no. 4, pp. 2095–2103, 2006. View at Publisher · View at Google Scholar · View at PubMed
  66. F. Finetti, M. T. Savino, and C. T. Baldari, “Positive and negative regulation of antigen receptor signaling by the Shc family of protein adapters,” Immunological Reviews, vol. 232, no. 1, pp. 115–134, 2009. View at Publisher · View at Google Scholar · View at PubMed
  67. J. Jaeken and G. Matthijs, “Congenital disorders of glycosylation: a rapidly expanding disease family,” Annual Review of Genomics and Human Genetics, vol. 8, pp. 261–278, 2007. View at Publisher · View at Google Scholar · View at PubMed
  68. P. Ashwood, S. Wills, and J. Van De Water, “The immune response in autism: a new frontier for autism research,” Journal of Leukocyte Biology, vol. 80, no. 1, pp. 1–15, 2006. View at Publisher · View at Google Scholar · View at PubMed
  69. S. Y. C. Chong and J. R. Chan, “Tapping into the glial reservoir: cells committed to remaining uncommitted,” Journal of Cell Biology, vol. 188, no. 3, pp. 305–312, 2010. View at Publisher · View at Google Scholar · View at PubMed
  70. H. R. Ranaivo, J. M. Craft, W. Hu et al., “Glia as a therapeutic target: selective suppression of human amyloid-β-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration,” Journal of Neuroscience, vol. 26, no. 2, pp. 662–670, 2006. View at Publisher · View at Google Scholar · View at PubMed
  71. S. Jimenez, D. Baglietto-Vargas, C. Caballero et al., “Inflammatory response in the hippocampus of PS1/APP mouse model of Alzheimer's disease: age-dependent switch in the microglial phenotype from alternative to classic,” Journal of Neuroscience, vol. 28, no. 45, pp. 11650–11661, 2008. View at Publisher · View at Google Scholar · View at PubMed
  72. H. Jyonouchi, L. Geng, D. Streck, and G. Toruner, “Children with autism spectrum disorders (ASD) characterized by frequent viral infection and subsequent loss of cognitive skills differ in mRNA expression of peripheral blood monocytes from other ASD children,” Journal of Immunology, vol. 182, p. 136.7, 2009. View at Google Scholar
  73. W. H. Wong and F. Liang, “Dynamic weighting in Monte Carlo and optimization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 227–232, 1997. View at Publisher · View at Google Scholar
  74. H. Jyonouchi, L. Geng, D. Streck, and G. Toruner, “A distinct pattern of mRNA expression by monocytes is found in a subset of children with autism spectrum disorders (ASD) who present with recurrent infection, repeated loss of cognitive skills, and persistent gastrointestinal (GI) symptoms,” Journal of Immunology, vol. 184, p. 51.16, 2010. View at Google Scholar
  75. S. Girard, L. Tremblay, M. Lepage, and G. Sébire, “IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation,” Journal of Immunology, vol. 184, no. 7, pp. 3997–4005, 2010. View at Publisher · View at Google Scholar · View at PubMed
  76. A. Piton, J. L. Michaud, H. Peng et al., “Mutations in the calcium-related gene IL1RAPL1 are associated with autism,” Human Molecular Genetics, vol. 17, no. 24, pp. 3965–3974, 2008. View at Publisher · View at Google Scholar · View at PubMed
  77. S. E. P. Smith, J. Li, K. Garbett, K. Mirnics, and P. H. Patterson, “Maternal immune activation alters fetal brain development through interleukin-6,” Journal of Neuroscience, vol. 27, no. 40, pp. 10695–10702, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. S. E. P. Smith, J. Li, K. Garbett, K. Mirnics, and P. H. Patterson, “Maternal immune activation alters fetal brain development through interleukin-6,” Journal of Neuroscience, vol. 27, no. 40, pp. 10695–10702, 2007. View at Publisher · View at Google Scholar · View at PubMed
  79. H. Ó. Atladóttir, M. G. Pedersen, P. Thorsen et al., “Association of family history of autoimmune diseases and autism spectrum disorders,” Pediatrics, vol. 124, no. 2, pp. 687–694, 2009. View at Publisher · View at Google Scholar · View at PubMed
  80. J. Shi, D. F. Levinson, J. Duan et al., “Common variants on chromosome 6p22.1 are associated with schizophrenia,” Nature, vol. 460, no. 7256, pp. 753–757, 2009. View at Publisher · View at Google Scholar · View at PubMed
  81. H. Stefansson, R. A. Ophoff, S. Steinberg et al., “Common variants conferring risk of schizophrenia,” Nature, vol. 460, no. 7256, pp. 744–747, 2009. View at Publisher · View at Google Scholar · View at PubMed
  82. S. M. Purcell, N. R. Wray, J. L. Stone et al., “Common polygenic variation contributes to risk of schizophrenia and bipolar disorder,” Nature, vol. 460, no. 7256, pp. 748–752, 2009. View at Publisher · View at Google Scholar · View at PubMed
  83. L. A. Weiss, “Autism genetics: emerging data from genome-wide copynumber and single nucleotide polymorphism scans,” Expert Review of Molecular Diagnostics, vol. 9, no. 8, pp. 795–803, 2009. View at Publisher · View at Google Scholar · View at PubMed
  84. S. Vuillermot, L. Weber, J. Feldon, and U. Meyer, “A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia,” Journal of Neuroscience, vol. 30, no. 4, pp. 1270–1287, 2010. View at Publisher · View at Google Scholar · View at PubMed
  85. C. K. Baumgartner, A. Ferrante, M. Nagaoka, J. Gorski, and L. P. Malherbe, “Peptide-MHC class II complex stability governs CD4 T cell clonal selection,” Journal of Immunology, vol. 184, no. 2, pp. 573–581, 2010. View at Publisher · View at Google Scholar · View at PubMed
  86. I. J. Van Benten, C. M. Van Drunen, L. P. Koopman et al., “Age- and infection-related maturation of the nasal immune response in 0–2-year-old children,” Allergy, vol. 60, no. 2, pp. 226–232, 2005. View at Publisher · View at Google Scholar · View at PubMed
  87. C. Depienne, D. Moreno-De-Luca, D. Heron et al., “Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders,” Biological Psychiatry, vol. 66, no. 4, pp. 349–359, 2009. View at Publisher · View at Google Scholar · View at PubMed
  88. D. Grafodatskaya, B. Chung, P. Szatmari, and R. Weksberg, “Autism spectrum disorders and epigenetics,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 49, pp. 794–809, 2010. View at Publisher · View at Google Scholar · View at PubMed
  89. A. Nguyen, T. A. Rauch, G. P. Pfeifer, and V. W. Hu, “Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain,” FASEB Journal, vol. 24, no. 8, pp. 3036–3051, 2010. View at Publisher · View at Google Scholar · View at PubMed
  90. R. M. Moretti, M. M. Marelli, M. Motta, and P. Limonta, “Role of the orphan nuclear receptor ROR alpha in the control of the metastatic behavior of androgen-independent prostate cancer cells,” Oncology Reports, vol. 9, no. 5, pp. 1139–1143, 2002. View at Google Scholar
  91. Y. Jiang, B. Langley, F. D. Lubin et al., “Epigenetics in the nervous system,” Journal of Neuroscience, vol. 28, no. 46, pp. 11753–11759, 2008. View at Publisher · View at Google Scholar · View at PubMed
  92. A. P. Feinberg, “Epigenetics at the epicenter of modern medicine,” Journal of the American Medical Association, vol. 299, no. 11, pp. 1345–1350, 2008. View at Publisher · View at Google Scholar · View at PubMed
  93. M. Esteller, “Epigenetics in cancer,” New England Journal of Medicine, vol. 358, no. 11, pp. 1148–1159, 2008. View at Publisher · View at Google Scholar · View at PubMed
  94. A. R. Isles and L. S. Wilkinson, “Epigenetics: what is it and why is it important to mental disease?” British Medical Bulletin, vol. 85, no. 1, pp. 35–45, 2008. View at Publisher · View at Google Scholar · View at PubMed
  95. A. Hogart, K. N. Leung, N. J. Wang et al., “Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number,” Journal of Medical Genetics, vol. 46, no. 2, pp. 86–93, 2009. View at Publisher · View at Google Scholar · View at PubMed
  96. R. P. Sharma, D. P. Gavin, and D. R. Grayson, “CpG methylation in neurons: message, memory, or mask?” Neuropsychopharmacology, vol. 35, no. 10, pp. 2009–2020, 2010. View at Google Scholar