Table of Contents Author Guidelines Submit a Manuscript
Autism Research and Treatment
Volume 2013, Article ID 609705, 9 pages
http://dx.doi.org/10.1155/2013/609705
Clinical Study

Effectiveness of Methylcobalamin and Folinic Acid Treatment on Adaptive Behavior in Children with Autistic Disorder Is Related to Glutathione Redox Status

1Department of Pediatrics, Arkansas Children’s Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
2Department of Biostatistics, Arkansas Children’s Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA

Received 15 July 2013; Accepted 4 September 2013

Academic Editor: Klaus-Peter Ossenkopp

Copyright © 2013 Richard E. Frye et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Rice, “Autism, Developmental Disabilities Monitoring Network Surveillance Year Principal I, Centers for Disease C, Prevention: prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, United States, 2006,” Morbidity and Mortality Weekly Report, vol. 58, no. 10, pp. 1–20, 2009. View at Google Scholar · View at Scopus
  2. G. B. Schaefer and N. J. Mendelsohn, “Clinical genetics evaluation in identifying the etiology of autism spectrum disorders,” Genetics in Medicine, vol. 10, no. 4, pp. 301–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. R. E. Frye and D. A. Rossignol, “Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders,” Pediatric Research, vol. 69, no. 5, pp. 41R–47R, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. A. Rossignol and R. E. Frye, “Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis,” Molecular Psychiatry, vol. 17, no. 3, pp. 290–314, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. S. J. James, S. Melnyk, S. Jernigan, A. Hubanks, S. Rose, and D. W. Gaylor, “Abnormal transmethylation/transsulfuration metabolism and DNA hypomethylation among parents of children with autism,” Journal of Autism and Developmental Disorders, vol. 38, no. 10, pp. 1966–1975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. J. James, S. Melnyk, S. Jernigan et al., “Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism,” American Journal of Medical Genetics Part B, vol. 141, no. 8, pp. 947–956, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Melnyk, G. J. Fuchs, E. Schulz et al., “Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism,” Journal of Autism and Developmental Disorders, vol. 42, no. 3, pp. 367–377, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Ashwood, B. A. Corbett, A. Kantor, H. Schulman, J. van de Water, and D. G. Amaral, “In search of cellular immunophenotypes in the blood of children with autism,” PLoS ONE, vol. 6, no. 5, Article ID e19299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Ashwood, P. Krakowiak, I. Hertz-Picciotto, R. Hansen, I. N. Pessah, and J. Van de Water, “Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders,” Journal of Neuroimmunology, vol. 232, no. 1-2, pp. 196–199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Ashwood, P. Krakowiak, I. Hertz-Picciotto, R. Hansen, I. N. Pessah, and J. Van de Water, “Altered T cell responses in children with autism,” Brain, Behavior, and Immunity, vol. 25, no. 5, pp. 840–849, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. D. A. Rossignol and R. E. Frye, “A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures,” Molecular Psychiatry, vol. 17, no. 4, pp. 389–401, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Viding and S.-J. Blakemore, “Endophenotype approach to developmental psychopathology: implications for autism research,” Behavior Genetics, vol. 37, no. 1, pp. 51–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. J. James, P. Cutler, S. Melnyk et al., “Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism,” American Journal of Clinical Nutrition, vol. 80, no. 6, pp. 1611–1617, 2004. View at Google Scholar · View at Scopus
  14. S. J. James, S. Rose, S. Melnyk et al., “Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism,” FASEB Journal, vol. 23, no. 8, pp. 2374–2383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Rose, S. Melnyk, T. A. Trusty et al., “Intracellular and extracellular redox status and free radical generation in primary immune cells from children with autism,” Autism Research and Treatment, vol. 2012, Article ID 986519, 10 pages, 2012. View at Publisher · View at Google Scholar
  16. W. Droge and R. Breitkreutz, “Glutathione and immune function,” Proceedings of the Nutrition Society, vol. 59, no. 4, pp. 595–600, 2000. View at Google Scholar · View at Scopus
  17. A. Pastore, G. Federici, E. Bertini, and F. Piemonte, “Analysis of glutathione: implication in redox and detoxification,” Clinica Chimica Acta, vol. 333, no. 1-2, pp. 19–39, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Biswas, A. S. Chida, and I. Rahman, “Redox modifications of protein-thiols: emerging roles in cell signaling,” Biochemical Pharmacology, vol. 71, no. 5, pp. 551–564, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Q. Schafer and G. R. Buettner, “Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1191–1212, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Reid and F. Jahoor, “Glutathione in disease,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 4, no. 1, pp. 65–71, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Rose, S. Melnyk, O. Pavliv et al., “Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain,” Translational Psychiatry, vol. 2, article e134, 2012. View at Google Scholar
  22. A. Chauhan and V. Chauhan, “Oxidative stress in autism,” Pathophysiology, vol. 13, no. 3, pp. 171–181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. J. James, S. Melnyk, G. Fuchs et al., “Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 425–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Melnyk, M. Pogribna, I. Pogribny, R. J. Hine, and S. J. James, “A new HPLC method for the simultaneous determination of oxidized and reduced plasma aminothiols using coulometric electrochemical detection,” Journal of Nutritional Biochemistry, vol. 10, no. 8, pp. 490–497, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Melnyk, M. Pogribna, I. P. Pogribny, P. Yi, and S. J. James, “Measurement of plasma and intracellular S-adenosylmethionine and S-adenosylhomocysteine utilizing coulometric electrochemical detection: alterations with plasma homocysteine and pyridoxal 5′-phosphate concentrations,” Clinical Chemistry, vol. 46, no. 2, pp. 265–272, 2000. View at Google Scholar · View at Scopus
  26. S. Sparrow, D. Cicchetti, and D. Balla, Vineland Adaptive Behavior Scales, P. Assessment, Minneapolis, Minn, USA, 2nd edition, 2005.
  27. N. M. Laird and J. H. Ware, “Random-effects models for longitudinal data,” Biometrics, vol. 38, no. 4, pp. 963–974, 1982. View at Google Scholar · View at Scopus
  28. R. E. Frye, R. DeLatorre, H. B. Taylor et al., “Metabolic effects of sapropterin treatment in autism spectrum disorder: a preliminary study,” Translational Psychiatry, vol. 3, article e237, 2013. View at Google Scholar
  29. S. M. Melnyk, K. F. More, and E. F. Miles, “Idiopathic radiation recall dermatitis developing nine months after cessation of Cisplatin therapy in treatment of squamous cell carcinoma of the tonsil,” Case Reports in Oncological Medicine, vol. 2012, Article ID 271801, 3 pages, 2012. View at Publisher · View at Google Scholar
  30. R. E. Frye, J. M. Sequeira, E. V. Quadros, S. J. James, and D. A. Rossignol, “Cerebral folate receptor autoantibodies in autism spectrum disorder,” Molecular Psychiatry, vol. 18, no. 3, pp. 369–381, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Y. Hardan, L. K. Fung, R. A. Libove et al., “A randomized controlled pilot trial of oral N-acetylcysteine in children with autism,” Biological Psychiatry, vol. 71, no. 11, pp. 956–961, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. J. B. Adams and C. Holloway, “Pilot study of a moderate dose multivitamin/mineral supplement for children with autistic spectrum disorder,” Journal of Alternative and Complementary Medicine, vol. 10, no. 6, pp. 1033–1039, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. J. B. Adams, T. Audhya, S. McDonough-Means et al., “Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity,” Nutrition and Metabolism, vol. 8, article 34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. R. E. Frye, R. DeLatorre, and H. B. Taylor, “Redox metabolism abnormalities in autistic children associated with mitochondrial disease,” Translational Psychiatry, 2013. View at Google Scholar
  35. N. Lofthouse, R. Hendren, E. Hurt, I. E. Arnold, and E. Butter, “A review of complementary and alternative treatments for autism spectrum disorders,” Autism Research and Treatment, 2012. View at Google Scholar
  36. D. A. Rossignol, “Novel and emerging treatments for autism spectrum disorders: a systematic review,” Annals of Clinical Psychiatry, vol. 21, no. 4, pp. 213–236, 2009. View at Google Scholar · View at Scopus
  37. J. M. Perrin, D. L. Coury, S. L. Hyman, L. Cole, A. M. Reynolds, and T. Clemons, “Complementary and alternative medicine use in a large pediatric autism sample,” Pediatrics, vol. 130, pp. S77–S82, 2012. View at Google Scholar
  38. S. L. Hyman and S. E. Levy, “Introduction: novel therapies in developmental disabilities—hope, reason, and evidence,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 11, no. 2, pp. 107–109, 2005. View at Publisher · View at Google Scholar · View at Scopus