Table of Contents
Bone Marrow Research
Volume 2011, Article ID 583439, 9 pages
http://dx.doi.org/10.1155/2011/583439
Review Article

Multiple Myeloma: A Review of Imaging Features and Radiological Techniques

1Department of Radiology, Mater Misericordiae University Hospital, Dublin 7, Ireland
2Department of Radiology, University of Texas, MD Anderson Cancer Centre, Houston, TX 77030, USA
3Department of Haematology, Mater Misericordiae University Hospital, Dublin 7, Ireland

Received 13 December 2010; Revised 6 April 2011; Accepted 30 May 2011

Academic Editor: César O. Freytes

Copyright © 2011 C. F. Healy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Landis, T. Murray, S. Bolden, and P. A. Wingo, “Cancer statistics, 1998,” Ca-A Cancer Journal for Clinicians, vol. 48, no. 1, pp. 6–29, 1998. View at Google Scholar · View at Scopus
  2. R. Desikan, B. Barlogie, J. Sawyer et al., “Results of high-dose therapy for 1000 patients with multiple myeloma: durable complete remissions and superior survival in the absence of chromosome 13 abnormalities,” Blood, vol. 95, no. 12, pp. 4008–4010, 2000. View at Google Scholar · View at Scopus
  3. S. Waheed, J. D. Shaughnessy, F. Van Rhee et al., “International staging system and metaphase cytogenetic abnormalities in the era of gene expression profiling data in multiple myeloma treated with total therapy 2 and 3 protocols,” Cancer, vol. 117, no. 5, pp. 1001–1009, 2011. View at Publisher · View at Google Scholar
  4. B. G. M. Durie and S. E. Salmon, “A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival,” Cancer, vol. 36, no. 3, pp. 842–854, 1975. View at Google Scholar · View at Scopus
  5. B. G. M. Durie, “The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system,” European Journal of Cancer, vol. 42, no. 11, pp. 1539–1543, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Paget, “The distribution of secondary growths in cancer of the breast,” The Lancet, vol. 133, no. 3421, pp. 571–573, 1889. View at Google Scholar · View at Scopus
  7. N. Giuliani, S. Colla, F. Morandi et al., “Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation,” Blood, vol. 106, no. 7, pp. 2472–2483, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. C. Politou, D. J. Heath, A. Rahemtulla et al., “Serum concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation,” International Journal of Cancer, vol. 119, no. 7, pp. 1728–1731, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Ghali, C. Chauveau, P. Hardouin, O. Broux, and J. C. Devedjian, “TNF-α's effects on proliferation and apoptosis in human mesenchymal stem cells depend on RUNX2 expression,” Journal of Bone and Mineral Research, vol. 25, no. 7, pp. 1616–1626, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Collins, “Multiple myeloma,” in Imaging in Oncology, J. E. Husband and R. H. Resnik, Eds., vol. 2, 1998. View at Google Scholar
  11. A. Baur-Melnyk, S. Buhmann, C. Becker et al., “Whole-body MRI versus whole-body MDCT for staging of multiple myeloma,” American Journal of Roentgenology, vol. 190, no. 4, pp. 1097–1104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Snapper and A. Khan, Myelomatosis: Fundamentals and Clinical Features, University Park Press, Baltimore, Md, USA, 1971.
  13. S. Lütje, J. W. J. Rooy, S. Croockewit, E. Koedam, W. J. G. Oyen, and R. A. Raymakers, “Role of radiography, MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma,” Annals of Hematology, vol. 88, no. 12, pp. 1161–1168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Dimopoulos, E. Terpos, R. L. Comenzo et al., “International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma,” Leukemia, vol. 23, no. 9, pp. 1545–1556, 2009. View at Google Scholar · View at Scopus
  15. D. J. Dinter, W. K. Neff, J. Klaus et al., “Comparison of whole-body MR imaging and conventional X-ray examination in patients with multiple myeloma and implications for therapy,” Annals of Hematology, vol. 88, no. 5, pp. 457–464, 2009. View at Publisher · View at Google Scholar
  16. A. H. Mahnken, J. E. Wildberger, G. Gehbauer et al., “Multidetector CT of the spine in multiple myeloma: comparison with MR imaging and radiography,” American Journal of Roentgenology, vol. 178, no. 6, pp. 1429–1436, 2002. View at Google Scholar · View at Scopus
  17. R. Avva, R. L. Vanhemert, B. Barlogie, N. Munshi, and E. J. Angtuaco, “CT-guided biopsy of focal lesions in patients with multiple myeloma may reveal new and more aggressive cytogenetic abnormalities,” American Journal of Neuroradiology, vol. 22, no. 4, pp. 781–785, 2001. View at Google Scholar · View at Scopus
  18. M. Horger, C. D. Claussen, U. Bross-Bach et al., “Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography,” European Journal of Radiology, vol. 54, no. 2, pp. 289–297, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Baur-Melnyk, S. Buhmann, H. R. Dürr, and M. Reiser, “Role of MRI for the diagnosis and prognosis of multiple myeloma,” European Journal of Radiology, vol. 55, no. 1, pp. 56–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. B. Vogler III and W. A. Murphy, “Bone marrow imaging,” Radiology, vol. 168, no. 3, pp. 679–693, 1988. View at Google Scholar · View at Scopus
  21. L. A. Moulopoulos, M. A. Dimopoulos, D. Weber, L. Fuller, H. I. Libshitz, and R. Alexanian, “Magnetic resonance imaging in the staging of solitary plasmacytoma of bone,” Journal of Clinical Oncology, vol. 11, no. 7, pp. 1311–1315, 1993. View at Google Scholar · View at Scopus
  22. R. Walker and L. Jones-Jackson, “Diagnostic imaging of multiple myeloma- FDG PET and MRI complementary for tracking short vs long-term tumour response,” Blood, vol. 104, no. 11, p. 217a, 2004. View at Google Scholar
  23. A. M. Herneth, K. Friedrich, C. Weidekamm et al., “Diffusion weighted imaging of bone marrow pathologies,” European Journal of Radiology, vol. 55, no. 1, pp. 74–83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Eustace, R. Walker, M. Blake, and E. K. Yucel, “Whole-body MR imaging: practical issues, clinical applications, and future directions,” Magnetic Resonance Imaging Clinics of North America, vol. 7, no. 2, pp. 209–236, 1999. View at Google Scholar · View at Scopus
  25. E. Kavanagh, C. Smith, and S. Eustace, “Whole-body turbo STIR MR imaging: controversies and avenues for development,” European Radiology, vol. 13, no. 9, pp. 2196–2205, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Bataille, J. Chevalier, M. Rossi, and J. Sany, “Bone scintigraphy in plasma-cell myeloma. A prospective study of 70 patients,” Radiology, vol. 145, no. 3, pp. 801–804, 1982. View at Google Scholar · View at Scopus
  27. K. F. Hubner, G. A. Andrews, and R. L. Hayes, “The use of rare-earth radionuclides and other bone-seekers in the evaluation of bone lesions in patients with multiple myeloma or solitary plasmacytoma,” Radiology, vol. 125, no. 1, pp. 171–176, 1977. View at Google Scholar · View at Scopus
  28. H. Schirrmeister, M. Bommer, A. K. Buck et al., “Initial results in the assesssmemnt of multiple myeloma using 18F-FDG PET,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 29, pp. 361–366, 2002. View at Google Scholar
  29. M. A. Bredella, L. Steinbach, G. Caputo, G. Segall, and R. Hawkins, “Value of FDG PET in the assessment of patients with multiple myeloma,” American Journal of Roentgenology, vol. 184, no. 4, pp. 1199–1204, 2005. View at Google Scholar · View at Scopus
  30. C. P. Shortt, T. G. Gleeson, K. A. Breen et al., “Whole-Body MRI Versus PET in Assessment of Multiple Myeloma Disease Activity,” American Journal of Roentgenology, vol. 192, no. 4, pp. 980–986, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. E. Juweid and B. D. Cheson, “Positron-emission tomography and assessment of cancer therapy,” New England Journal of Medicine, vol. 354, no. 5, pp. 496–507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Villa, E. Balleari, M. Carletto et al., “Staging and therapy monitoring of multiple myeloma by 99mTc- sestamibi scintigraphy: a five year single center experience,” Journal of Experimental and Clinical Cancer Research, vol. 24, no. 3, pp. 355–361, 2005. View at Google Scholar · View at Scopus
  33. S. Mirzaei, M. Filipits, A. Keck et al., “Comparison of Technetium-99m-MIBI imaging with MRI for detection of spine involvement in patients with multiple myeloma,” BMC Nuclear Medicine, vol. 3, article 1, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Fonti, S. Del Vecchio, A. Zannetti et al., “Functional imaging of multidrug resistant phenotype by 99mTc-MIBI scan in patients with multiple myeloma,” Cancer Biotherapy and Radiopharmaceuticals, vol. 19, no. 2, pp. 165–170, 2004. View at Publisher · View at Google Scholar
  35. G. Damaj, M. Mohty, N. Vey et al., “Features of extramedullary and extraosseous multiple myeloma: a report of 19 patients from a single center,” European Journal of Haematology, vol. 73, no. 6, pp. 402–406, 2004. View at Publisher · View at Google Scholar
  36. P. O'Sullivan, H. O'Dwyer, J. Flint, P. L. Munk, and N. L. Muller, “Malignant chest wall neoplasms of bone and cartilage: a pictorial review of CT and MR findings,” British Journal of Radiology, vol. 80, no. 956, pp. 678–684, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. C. D. Collins, “Problems monitoring response in multiple myeloma,” Cancer Imaging, vol. 5, pp. S119–S126, 2005. View at Google Scholar · View at Scopus
  38. F. E. Lecouvet, B. C. Vande Berg, J. Malghem, and B. E. Maldague, “Magnetic resonance and computed tomography imaging in multiple myeloma,” Seminars in Musculoskeletal Radiology, vol. 5, no. 1, pp. 43–55, 2001. View at Google Scholar · View at Scopus
  39. T. Kazama, N. Swanston, D. A. Podoloff, and H. A. Macapinlac, “Effect of colony-stimulating factor and conventional-or high-dose chemotherapy on FDG uptake in bone marrow,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 12, pp. 1406–1411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. B. G. M. Durie, A. D. Waxman, A. D'Agnolo, and C. M. Williams, “18F-FDG pet identifies high-risk myeloma,” Journal of Nuclear Medicine, vol. 43, no. 11, pp. 1457–1463, 2002. View at Google Scholar · View at Scopus
  41. T. B. Bartel, J. Haessler, T. L. Y. Brown et al., “F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma,” Blood, vol. 114, no. 10, pp. 2068–2076, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. D'Sa, N. Abildgaard, J. Tighe, P. Shaw, and M. Hall-Craggs, “Guidelines for the use of imaging in the management of myeloma,” British Journal of Haematology, vol. 137, no. 1, pp. 49–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Eustace, R. Tello, V. DeCarvalho, J. Carey, E. Melhern, and E. K. Yucel, “A comparison of whole-body turb-STIR MR imaging and planar 99Tc-methylene diphosphonate scintigraphy in the examination of patients with suspicious skeletal metastasis,” American Journal of Roentgenology, vol. 169, no. 6, pp. 1661–1665, 1997. View at Google Scholar
  44. A. Agool, B. W. Schot, P. L. Jager, and E. Vellenga, “18F-FLT PET in hematologic disorders: a novel technique to analyze the bone marrow compartment,” Journal of Nuclear Medicine, vol. 47, no. 10, pp. 1592–1598, 2006. View at Google Scholar · View at Scopus