Table of Contents Author Guidelines Submit a Manuscript
Bone Marrow Research
Volume 2012, Article ID 165107, 8 pages
http://dx.doi.org/10.1155/2012/165107
Review Article

Hematopoietic Stem and Progenitor Cells as Effectors in Innate Immunity

1Department of Pathology, Microbiology, Immunology, University of California School of Veterinary Medicine, Davis, CA 95616, USA
2Department of Biomedical Engineering, University of California, Davis, CA 95616, USA

Received 11 February 2012; Revised 22 April 2012; Accepted 28 April 2012

Academic Editor: Meenal Mehrotra

Copyright © 2012 Jennifer L. Granick et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Medvinsky and E. Dzierzak, “Definitive hematopoiesis is autonomously initiated by the AGM region,” Cell, vol. 86, no. 6, pp. 897–906, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Medvinsky, S. Rybtsov, and S. Taoudi, “Embryonic origin of the adult hematopoietic system: advances and questions,” Development, vol. 138, no. 6, pp. 1017–1031, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Massberg, P. Schaerli, I. Knezevic-Maramica et al., “Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues,” Cell, vol. 131, no. 5, pp. 994–1008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. E. Wright, A. J. Wagers, A. Pathak Gulati, F. L. Johnson, and I. L. Weissman, “Physiological migration of hematopoietic stem and progenitor cells,” Science, vol. 294, no. 5548, pp. 1933–1936, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. H. Kim, J. L. Granick, C. Kwok et al., “Neutrophil survival and c-kit+-progenitor proliferation in Staphylococcus aureus-infected skin wounds promote resolution,” Blood, vol. 117, no. 12, pp. 3343–3352, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Si, C. L. Tsou, K. Croft, and I. F. Charo, “CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1192–1203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. L. Johns and M. M. Christopher, “Extramedullary hematopoiesis: a new look at the underlying stem cell niche, theories of development, and occurrence in animals,” Veterinary Pathology, vol. 49, no. 3, pp. 508–523, 2012. View at Google Scholar
  8. Y. Nagai, K. P. Garrett, S. Ohta et al., “Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment,” Immunity, vol. 24, no. 6, pp. 801–812, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Okada, H. Nakauchi, K. Nagayoshi, S. I. Nishikawa, Y. Miura, and T. Suda, “In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells,” Blood, vol. 80, no. 12, pp. 3044–3050, 1992. View at Google Scholar · View at Scopus
  10. J. L. Christensen and I. L. Weissman, “Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 25, pp. 14541–14546, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Osawa, K. I. Hanada, H. Hamada, and H. Nakauchi, “Long-term lymphohematopoietic reconstitution by a single CD34- low/negative hematopoietic stem cell,” Science, vol. 273, no. 5272, pp. 242–245, 1996. View at Google Scholar · View at Scopus
  12. M. A. Goodell, K. Brose, G. Paradis, A. S. Conner, and R. C. Mulligan, “Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo,” Journal of Experimental Medicine, vol. 183, no. 4, pp. 1797–1806, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. Kiel, Ö. H. Yilmaz, T. Iwashita, O. H. Yilmaz, C. Terhorst, and S. J. Morrison, “SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells,” Cell, vol. 121, no. 7, pp. 1109–1121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Beerman, D. Bhattacharya, S. Zandi et al., “Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 12, pp. 5465–5470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. Challen, N. C. Boles, S. M. Chambers, and M. A. Goodell, “Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1,” Cell Stem Cell, vol. 6, no. 3, pp. 265–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. F. J. Dumont and L. Z. Coker, “Interferon-α/β enhances the expression of Ly-6 antigens on T cells in vivo and in vitro,” European Journal of Immunology, vol. 16, no. 7, pp. 735–740, 1986. View at Google Scholar · View at Scopus
  17. T. R. Malek, K. M. Danis, and E. K. Codias, “Tumor necrosis factor synergistically acts with IFN-γ to regulate Ly-6A/E expression in T lymphocytes, thymocytes and bone marrow cells,” Journal of Immunology, vol. 142, no. 6, pp. 1929–1936, 1989. View at Google Scholar · View at Scopus
  18. T. D. Randall and I. L. Weissman, “Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment,” Blood, vol. 89, no. 10, pp. 3596–3606, 1997. View at Google Scholar · View at Scopus
  19. D. R. Coombe, S. M. Watt, and C. R. Parish, “Mac-1 (CD11b/CD18) and CD45 mediate the adhesion of hematopoietic progenitor cells to stromal cell elements via recognition of stromal heparan sulfate,” Blood, vol. 84, no. 3, pp. 739–752, 1994. View at Google Scholar · View at Scopus
  20. K. C. MacNamara, K. Oduro, O. Martin et al., “Infection-induced myelopoiesis during intracellular bacterial infection is critically dependent upon IFN-γ signaling,” Journal of Immunology, vol. 186, no. 2, pp. 1032–1043, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. L. E. Purton and D. T. Scadden, “Limiting factors in murine hematopoietic stem cell assays,” Cell Stem Cell, vol. 1, no. 3, pp. 263–270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Schofield, “The relationship between the spleen colony-forming cell and the haemopoietic stem cell. A hypothesis,” Blood Cells, vol. 4, no. 1-2, pp. 7–25, 1978. View at Google Scholar · View at Scopus
  23. D. P. O'Malley, “Benign extramedullary myeloid proliferations,” Modern Pathology, vol. 20, no. 4, pp. 405–415, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. O. Muench, J.-C. Chen, A. I. Beyer, and M. E. Fomin, “Cellular therapies supplement: the peritoneum as an ectopic site of hematopoiesis following in utero transplantation,” Transfusion, vol. 51, supplement 4, pp. 106S–117S, 2011. View at Publisher · View at Google Scholar
  25. T. Miyata, M. Masuzawa, K. Katsuoka, and M. Higashihara, “Cutaneous extramedullary hematopoiesis in a patient with idiopathic myelofibrosis,” Journal of Dermatology, vol. 35, no. 7, pp. 456–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. M. Vega Harring, M. Niyaz, S. Okada, and M. Kudo, “Extramedullary hematopoiesis in a pyogenic granuloma: a case report and review,” Journal of Cutaneous Pathology, vol. 31, no. 8, pp. 555–557, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. K. Mak, C. H. Chan, C. C. So, M. K. Chan, and Y. C. Chu, “Idiopathic myelofibrosis with extramedullary haemopoiesis involving the urinary bladder in a Chinese lady,” Clinical and Laboratory Haematology, vol. 24, no. 1, pp. 55–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. M. H. Heinicke, M. H. Zarrabi, and P. D. Gorevic, “Arthritis due to synovial involvement by extramedullary haematopoiesis in myelofibrosis with myeloid metaplasia,” Annals of the Rheumatic Diseases, vol. 42, no. 2, pp. 196–200, 1983. View at Google Scholar · View at Scopus
  29. T. T. Kuo, “Cutaneous extramedullary hematopoiesis presenting as leg ulcers,” Journal of the American Academy of Dermatology, vol. 4, no. 5, pp. 592–596, 1981. View at Google Scholar · View at Scopus
  30. D. P. Sarma, “Extramedullary hemopoiesis of the skin,” Archives of Dermatology, vol. 117, no. 1, pp. 58–59, 1981. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Revenga, C. Hörndler, C. Aguilar, and J. F. Paricio, “Cutaneous extramedullary hematopoiesis,” International Journal of Dermatology, vol. 39, no. 12, pp. 957–958, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. C. G. Rowlands, D. Rapson, and T. Morell, “Extramedullary hematopoiesis in a Pyogenic granuloma,” American Journal of Dermatopathology, vol. 22, no. 5, pp. 434–438, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. S. A. Saenz, M. C. Siracusa, J. G. Perrigoue et al., “IL25 elicits a multipotent progenitor cell population that promotes T H 2 cytokine responses,” Nature, vol. 464, no. 7293, pp. 1362–1366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Vaunois, M. Breyton, D. Seigneurin, and J. Boutonnat, “Intra-serous haematopoiesis,” In Vivo, vol. 19, no. 2, pp. 407–416, 2005. View at Google Scholar · View at Scopus
  35. J. Johns and D. Borjesson, “Downregulation of CXCL12 signaling and altered hematopoietic stem and progenitor cell trafficking in a murine model of acute anaplasma phagocytophilum infection,” Innate Immunity, vol. 18, no. 3, pp. 418–428, 2012. View at Publisher · View at Google Scholar
  36. J. L. Johns, K. C. MacNamara, N. J. Walker, G. M. Winslow, and D. L. Borjesson, “Infection with Anaplasma phagocytophilum induces multilineage alterations in hematopoietic progenitor cells and peripheral blood cells,” Infection and Immunity, vol. 77, no. 9, pp. 4070–4080, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Sugiyama, H. Kohara, M. Noda, and T. Nagasawa, “Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches,” Immunity, vol. 25, no. 6, pp. 977–988, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. L. Pablos, A. Amara, A. Bouloc et al., “Stromal-cell derived factor is expressed by dendritic cells and endothelium in human skin,” American Journal of Pathology, vol. 155, no. 5, pp. 1577–1586, 1999. View at Google Scholar · View at Scopus
  39. I. Petit, D. Jin, and S. Rafii, “The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis,” Trends in Immunology, vol. 28, no. 7, pp. 299–307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. D. J. Ceradini, A. R. Kulkarni, M. J. Callaghan et al., “Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1,” Nature Medicine, vol. 10, no. 8, pp. 858–864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Sadahira and M. Mori, “Role of the macrophage in erythropoiesis,” Pathology International, vol. 49, no. 10, pp. 841–848, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Choi, M. Kennedy, A. Kazarov, J. C. Papadimitriou, and G. Keller, “A common precursor for hematopoietic and endothelial cells,” Development, vol. 125, no. 4, pp. 725–732, 1998. View at Google Scholar · View at Scopus
  43. H. G. Kopp, S. T. Avecilla, A. T. Hooper, and S. Rafii, “The bone marrow vascular niche: home of HSC differentiation and mobilization,” Physiology, vol. 20, no. 5, pp. 349–356, 2005. View at Google Scholar · View at Scopus
  44. I. B. Mazo, J. C. Gutierrez-Ramos, P. S. Frenette, R. O. Hynes, D. D. Wagner, and U. H. Von Andrian, “Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1,” Journal of Experimental Medicine, vol. 188, no. 3, pp. 465–474, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Rafii, F. Shapiro, R. Pettengell et al., “Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors,” Blood, vol. 86, no. 9, pp. 3353–3363, 1995. View at Google Scholar · View at Scopus
  46. W. Li, S. A. Johnson, W. C. Shelley, and M. C. Yoder, “Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells,” Experimental Hematology, vol. 32, no. 12, pp. 1226–1237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. J. P. Chute, G. G. Muramoto, J. Fung, and C. Oxford, “Soluble factors elaborated by human brain endothelial cells induce the concomitant expansion of purified human BM CD34+CD38- cells and SCID-repopulating cells,” Blood, vol. 105, no. 2, pp. 576–583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Walzog and P. Gaehtgens, “Adhesion molecules: the path to a new understanding of acute inflammation,” News in Physiological Sciences, vol. 15, no. 3, pp. 107–113, 2000. View at Google Scholar · View at Scopus
  49. K. M. Zsebo, V. N. Yuschenkoff, S. Schiffer et al., “Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GM-CSF,” Blood, vol. 71, no. 1, pp. 99–103, 1988. View at Google Scholar · View at Scopus
  50. J. Burg, V. Krump-Konvalinkova, F. Bittinger, and C. J. Kirkpatrick, “GM-CSF expression by human lung microvascular endothelial cells: in vitro and in vivo findings,” American Journal of Physiology-Lung Cellular and Molecular Physiology, vol. 283, no. 2, pp. L460–L467, 2002. View at Google Scholar · View at Scopus
  51. B. Söoderquist, J. Källman, H. Holmberg, T. Vikerfors, and E. Kihlström, “Secretion of IL-6, IL-8 and G-CSF by human endothelial cells in vitro in response to Staphylococcus aureus and staphylococcal exotoxins,” APMIS, vol. 106, no. 12, pp. 1157–1164, 1998. View at Google Scholar · View at Scopus
  52. W. H. Fleming, E. J. Alpern, N. Uchida, K. Ikuta, and I. L. Weissman, “Steel factor influences the distribution and activity of murine hematopoietic stem cells in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 8, pp. 3760–3764, 1993. View at Google Scholar · View at Scopus
  53. J. W. Goodman and G. S. Hodgson, “Evidence for stem cells in the peripheral blood of mice,” Blood, vol. 19, pp. 702–714, 1962. View at Google Scholar · View at Scopus
  54. J. P. Lévesque, I. G. Winkler, S. R. Larsen, and J. E. Rasko, “Mobilization of bone marrow-derived progenitors,” Handbook of Experimental Pharmacology, no. 180, pp. 3–36, 2007. View at Google Scholar · View at Scopus
  55. J. P. Lévesque, Y. Takamatsu, S. K. Nilsson, D. N. Haylock, and P. J. Simmons, “Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor,” Blood, vol. 98, no. 5, pp. 1289–1297, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Jalili, N. Shirvaikar, L. Marquez-Curtis et al., “Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells,” Experimental Hematology, vol. 38, no. 4, pp. 321–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. M. H. Cottler-Fox, T. Lapidot, I. Petit et al., “Stem cell mobilization,” Hematology, pp. 419–437, 2003. View at Google Scholar · View at Scopus
  58. C. L. Semerad, M. J. Christopher, F. Liu et al., “G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow,” Blood, vol. 106, no. 9, pp. 3020–3027, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Artico, S. Bosco, C. Cavallotti et al., “Noradrenergic and cholinergic innervation of the bone marrow,” International journal of molecular medicine, vol. 10, no. 1, pp. 77–80, 2002. View at Google Scholar · View at Scopus
  60. A. Spiegel, S. Shivtiel, A. Kalinkovich et al., “Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling,” Nature Immunology, vol. 8, no. 10, pp. 1123–1131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Katayama, M. Battista, W. M. Kao et al., “Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow,” Cell, vol. 124, no. 2, pp. 407–421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. E. Karshovska, A. Zernecke, G. Sevilmis et al., “Expression of HIF-1α in injured arteries controls SDF-1α-mediated neointima formation in apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2540–2547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Massberg, I. Konrad, K. Schürzinger et al., “Platelets secrete stromal cell-derived factor 1α and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo,” Journal of Experimental Medicine, vol. 203, no. 5, pp. 1221–1233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Z. Ratajczak, R. Reca, M. Wysoczynski, J. Yan, and J. Ratajczak, “Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)—Implications for trafficking of CXCR4+ stem cells,” Experimental Hematology, vol. 34, no. 8, pp. 986–995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. R. A. J. Oostendorp, G. Reisbach, E. Spitzer et al., “VLA-4 and VCAM-1 are the principal adhesion molecules involved in the interaction between blast colony-forming cells and bone marrow stromal cells,” British Journal of Haematology, vol. 91, no. 2, pp. 275–284, 1995. View at Google Scholar · View at Scopus
  66. T. Papayannopoulou and B. Nakamoto, “Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 20, pp. 9374–9378, 1993. View at Publisher · View at Google Scholar · View at Scopus
  67. D. P. J. Kavanagh and N. Kalia, “Hematopoietic stem cell homing to injured tissues,” Stem Cell Reviews and Reports, vol. 7, no. 3, pp. 672–682, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. D. P. J. Kavanagh, L. E. Durant, H. A. Crosby et al., “Haematopoietic stem cell recruitment to injured murine liver sinusoids depends on α4β1 integrin/VCAM-1 interactions,” Gut, vol. 59, no. 1, pp. 79–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Zhang, E. Shpall, J. T. Willerson, and E. T. H. Yeh, “Fusion of human hematopoietic progenitor cells and murine cardiomyocytes is mediated by α4β1 integrin/vascular cell adhesion molecule-1 interaction,” Circulation Research, vol. 100, no. 5, pp. 693–702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. M. T. Baldridge, K. Y. King, N. C. Boles, D. C. Weksberg, and M. A. Goodell, “Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection,” Nature, vol. 465, no. 7299, pp. 793–797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Kolb-Mäurer, M. Wilhelm, F. Weissinger, E. B. Bröcker, and W. Goebel, “Interaction of human hematopoietic stem cells with bacterial pathogens,” Blood, vol. 100, no. 10, pp. 3703–3709, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Banerjee, L. Crawford, E. Samuelson, and G. Feuer, “Hematopoietic stem cells and retroviral infection,” Retrovirology, vol. 7, article no. 8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. M. T. Baldridge, K. Y. King, and M. A. Goodell, “Inflammatory signals regulate hematopoietic stem cells,” Trends in Immunology, vol. 32, no. 2, pp. 57–65, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Sato, N. Onai, H. Yoshihara, F. Arai, T. Suda, and T. Ohteki, “Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type i interferon-dependent exhaustion,” Nature Medicine, vol. 15, no. 6, pp. 696–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Singh, Y. Yao, A. Weliver, H. E. Broxmeyer, S. C. Hong, and C. H. Chang, “Vaccinia virus infection modulates the hematopoietic cell compartments in the bone marrow,” Stem Cells, vol. 26, no. 4, pp. 1009–1016, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. A. M. de Bruin, S. F. Libregts, M. Valkhof, L. Boon, I. P. Touw, and M. A. Nolte, “Ifngamma induces monopoiesis and inhibits neutrophil development during inflammation,” Blood, vol. 119, no. 6, pp. 1543–1554, 2012. View at Google Scholar
  77. N. N. Belyaev, D. E. Brown, A. I. G. Diaz et al., “Induction of an IL7-R+ c-Kithi myelolymphoid progenitor critically dependent on IFN-γ signaling during acute malaria,” Nature Immunology, vol. 11, no. 6, pp. 477–485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Sioud and Y. Fløisand, “NOD2/CARD15 on bone marrow CD34+ hematopoietic cells mediates induction of cytokines and cell differentiation,” Journal of Leukocyte Biology, vol. 85, no. 6, pp. 939–946, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. N. N. Zhang, S. H. Shen, L. J. Jiang et al., “RIG-I plays a critical role in negatively regulating granulocytic proliferation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10553–10558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Sioud, Y. Fløisand, L. Forfang, and F. Lund-Johansen, “Signaling through toll-like receptor 7/8 induces the differentiation of human bone marrow CD34+ progenitor cells along the myeloid lineage,” Journal of Molecular Biology, vol. 364, no. 5, pp. 945–954, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. K. De Luca, V. Frances-Duvert, M. J. Asensio et al., “The TLR1/2 agonist PAM3CSK4 instructs commitment of human hematopoietic stem cells to a myeloid cell fate,” Leukemia, vol. 23, no. 11, pp. 2063–2074, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Yanez, C. Murciano, J. E. O'Connor, D. Gozalbo, and M. L. Gil, “Candida albicans triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a MyD88-dependent signaling,” Microbes and Infection, vol. 11, no. 4, pp. 531–535, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Yanez, A. Flores, C. Murciano, J. E. O'Connor, D. Gozalbo, and M. L. Gil, “Signalling through TLR2/MyD88 induces differentiation of murine bone marrow stem and progenitor cells to functional phagocytes in response to Candida albicans,” Cellular Microbiology, vol. 12, no. 1, pp. 114–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Majka, A. Janowska-Wieczorek, J. Ratajczak et al., “Numerous growth factors, cytokines, and chemokines are secreted by human CD34+ cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner,” Blood, vol. 97, no. 10, pp. 3075–3085, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. Z. Allakhverdi and G. Delespesse, “Hematopoietic progenitor cells are innate Th2 cytokine-producing cells,” Allergy, vol. 67, no. 1, pp. 4–9, 2012. View at Publisher · View at Google Scholar
  86. Z. Allakhverdi, M. R. Comeau, D. E. Smith et al., “CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 472–e1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. J. L. Granick, D. L. Borjesson, and S. I. Simon, “Hematopoietic stem and progenitor cells traffic to s. Aureus-infected wounds where they proliferate and differentiate along the myeloid lineage in a myd88-dependent manner,” in Proceedings of the Annual Meeting of the Society for Leukocyte Biology, 2011.
  88. M. A. Schmid, H. Takizawa, D. R. Baumjohann, Y. Saito, and M. G. Manz, “Bone marrow dendritic cell progenitors sense pathogens via Toll-like receptors and subsequently migrate to inflamed lymph nodes,” Blood, vol. 118, no. 18, pp. 4829–4840, 2011. View at Publisher · View at Google Scholar
  89. M. R. Blanchet and K. M. McNagny, “Stem cells, inflammation and allergy,” Allergy, Asthma & Clinical Immunology, vol. 5, no. 1, p. 13, 2009. View at Publisher · View at Google Scholar