Table of Contents Author Guidelines Submit a Manuscript
Bone Marrow Research
Volume 2012, Article ID 329061, 10 pages
http://dx.doi.org/10.1155/2012/329061
Research Article

Inhibition of Mammalian Target of Rapamycin in Human Acute Myeloid Leukemia Cells Has Diverse Effects That Depend on the Environmental In Vitro Stress

1Division of Hematology, Institute of Medicine, University of Bergen, N-5021 Bergen, Norway
2Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway

Received 25 May 2012; Revised 3 August 2012; Accepted 27 August 2012

Academic Editor: Guido Kobbe

Copyright © 2012 Anita Ryningen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Döhner, E. H. Estey, S. Amadori et al., “Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet,” Blood, vol. 115, no. 3, pp. 453–474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. E. H. Estey, “Acute myeloid leukemia: 2012 update on diagnosis, risk stratification, and management,” American Journal of Hematology, vol. 87, pp. 89–99, 2012. View at Google Scholar
  3. C. Stapnes, B. T. Gjertsen, H. Reikvam, and O. Bruserud, “Targeted therapy in acute myeloid leukaemia: current status and future directions,” Expert Opinion on Investigational Drugs, vol. 18, no. 4, pp. 433–455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. M. Martelli, C. Evangelisti, F. Chiarini, C. Grimaldi, L. Manzoli, and J. A. McCubrey, “Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia,” Expert Opinion on Investigational Drugs, vol. 18, no. 9, pp. 1333–1349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Fasolo and C. Sessa, “Current and future directions in mammalian target of rapamycin inhibitors development,” Expert Opinion on Investigational Drugs, vol. 20, no. 3, pp. 381–394, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Albert, M. Serova, C. Dreyer, M. P. Sablin, S. Faivre, and E. Raymond, “New inhibitors of the mammalian target of rapamycin signaling pathway for cancer,” Expert Opinion on Investigational Drugs, vol. 19, no. 8, pp. 919–930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. W. Bowles and A. Jimeno, “New phosphatidylinositol 3-kinase inhibitors for cancer,” Expert Opinion on Investigational Drugs, vol. 20, no. 4, pp. 507–518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Tamburini, C. Elie, V. Bardet et al., “Constitutive phosphoinositide 3-kinase/Akt activation represents a favorable prognostic factor in de novo acute myelogenous leukemia patients,” Blood, vol. 110, no. 3, pp. 1025–1028, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. W. L. Yee, Z. Zeng, M. Konopleva et al., “Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies,” Clinical Cancer Research, vol. 12, no. 17, pp. 5165–5173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Bruserud, B. T. Gjertsen, and H. L. Von Volkman, “In vitro culture of human acute myelogenous leukemia (AML) cells in serum-free media: studies of native AML blasts and AML cell lines,” Journal of Hematotherapy and Stem Cell Research, vol. 9, no. 6, pp. 923–932, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Bruserud, “Effect of dipyridamole, theophyllamine and verapamil on spontaneous in vitro proliferation of myelogenous leukaemia cells,” Acta Oncologica, vol. 31, no. 1, pp. 53–58, 1992. View at Google Scholar · View at Scopus
  12. B. T. Gjertsen, A. M. Øyan, B. Marzolf et al., “Analysis of acute myelogenous leukemia: preparation of samples for genomic and proteomic analyses,” Journal of Hematotherapy and Stem Cell Research, vol. 11, no. 3, pp. 469–481, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Ryningen, E. Ersvær, A. M. Øyan et al., “Stress-induced in vitro apoptosis of native human acute myelogenous leukemia (AML) cells shows a wide variation between patients and is associated with low BCL-2:Bax ratio and low levels of heat shock protein 70 and 90,” Leukemia Research, vol. 30, no. 12, pp. 1531–1540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Ø. Bruserud, A. Ryningen, A. M. Olsnes et al., “Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells,” Haematologica, vol. 92, no. 3, pp. 332–341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. K. Stavrum, K. Petersen, I. Jonassen, and B. Dysvik, “Analysis of gene-expression data using J-express,” Current Protocols in Bioinformatics, no. 21, pp. 7.3.1–7.3.25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Reikvam, K. J. Hatfield, E. Ersvaer et al., “Expression profile of heat shock proteins in acute myeloid leukaemia patients reveals a distinct signature strongly associated with FLT3 mutation status—consequences and potentials for pharmacological intervention,” British Journal of Haematology, vol. 156, pp. 468–480, 2012. View at Google Scholar
  17. L. K. Francis, Y. Alsayed, X. Leleu et al., “Combination mammalian target of rapamycin inhibitor rapamycin and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity in multiple myeloma,” Clinical Cancer Research, vol. 12, no. 22, pp. 6826–6835, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. E. Perl, M. T. Kasner, D. Shank, S. M. Luger, and M. Carroll, “Single-cell pharmacodynamic monitoring of S6 ribosomal protein phosphorylation in AML blasts during a clinical trial combining the mTOR inhibitor sirolimus and intensive chemotherapy,” Clinical Cancer Research, vol. 18, pp. 1716–1725, 2012. View at Google Scholar
  19. Q. Zhang, Y. J. Yang, H. Wang et al., “Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway,” Stem Cells and Development, vol. 21, pp. 1321–1332, 2012. View at Google Scholar
  20. J. Wang, Z. Gu, P. Ni et al., “NF-kappaB P50/P65 hetero-dimer mediates differential regulation of CD166/ALCAM expression via interaction with micoRNA-9 after serum deprivation, providing evidence for a novel negative auto-regulatory loop,” Nucleic Acids Research, vol. 39, pp. 6440–6455, 2011. View at Google Scholar
  21. Y. Ohsawa, K. Isahara, S. Kanamori et al., “An ultrastructural and immunohistochemical study of pc12 cells during apoptosis induced by serum deprivation with special reference to autophagy and lysosomal cathepsins,” Archives of Histology and Cytology, vol. 61, no. 5, pp. 395–403, 1998. View at Google Scholar · View at Scopus
  22. D. D. Gougoumas, I. S. Vizirianakis, I. N. Triviai, and A. S. Tsiftsoglou, “Activation of Prn-p gene and stable transfection of Prn-p cDNA in leukemia MEL and neuroblastoma N2a cells increased production of PrPC but not prevented DNA fragmentation initiated by serum deprivation,” Journal of Cellular Physiology, vol. 211, no. 2, pp. 551–559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. H. Kim, M. Takahashi, E. Suzuki, and E. Niki, “Apoptosis induced by hydrogen peroxide under serum deprivation and its inhibition by antisense c-jun in F-MEL cells,” Biochemical and Biophysical Research Communications, vol. 271, no. 3, pp. 747–752, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. C. J. Welsh, A. M. Sayer, L. G. Littlefield, and M. C. Cabot, “Modification of lipid acyl groups by serum deprivation does not affect phorbol ester-induced differentiation of human leukemia cells,” Cancer Letters, vol. 16, no. 2, pp. 145–154, 1982. View at Google Scholar · View at Scopus
  25. E. S. Bergmann-Leitner and S. I. Abrams, “Treatment of human colon carcinoma cell lines with anti-neoplastic agents enhances their lytic sensitivity to antigen-specific CD8+ cytotoxic T lymphocytes,” Cancer Immunology, Immunotherapy, vol. 50, no. 9, pp. 445–455, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Baselga, M. J. De Jonge, J. Rodon et al., “A first-in-human phase I study of BKM120, an oral pan-class I PI3K inhibitor, in patients (pts) with advanced solid tumors,” Journal of Clinical Oncology, vol. 28, no. 15s, abstract 3003, 2010. View at Google Scholar
  27. A. J. Folkes, K. Ahmadi, W. K. Alderton et al., “The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1- ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer,” Journal of Medicinal Chemistry, vol. 51, no. 18, pp. 5522–5532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Fredly, E. Ersvær, C. Stapnes, B. T. Gjertsen, and Ø. Bruserud, “The combination of conventional chemotherapy with new targeted therapy in hematologic malignancies: the safety and efficiency of low-dose cytarabine supports its combination with new therapeutic agents in early clinical trials,” Current Cancer Therapy Reviews, vol. 5, no. 4, pp. 243–255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Fredly, C. Stapnes Bjørnsen, B. T. Gjertsen, and Ø. Bruserud, “Combination of the histone deacetylase inhibitor valproic acid with oral hydroxyurea or 6-mercaptopurin can be safe and effective in patients with advanced acute myeloid leukaemia—a report of five cases,” Hematology, vol. 15, no. 5, pp. 338–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Zhang, A. S. Lazorchak, D. Liu, F. Chen, and B. Su, “Inhibition of the mTORC2 and chaperone pathways to treat leukemia,” Blood, vol. 119, pp. 6080–6088, 2012. View at Google Scholar
  31. N. Chapuis, J. Tamburini, A. S. Green et al., “Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies,” Leukemia, vol. 24, no. 10, pp. 1686–1699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Reikvam, K. Hatfield, E. Ersvaer, A. Ryningen, and Bruserud Ø, “Pharmacological targeting of the PI3K-AKT/PKB-mTOR pathway alters local angioregulation in acute myelogenous leukemia,” Haematologica, vol. 95, no. s2, abstract 0634, 2010. View at Google Scholar
  33. A. M. Martelli, F. Chiarini, C. Evangelisti et al., “Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment,” Oncotarget, vol. 3, pp. 371–394, 2012. View at Google Scholar
  34. Ø. Bruserud, C. Stapnes, E. Ersvær, B. T. Gjertsen, and A. Ryningen, “Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cells,” Current Pharmaceutical Biotechnology, vol. 8, no. 6, pp. 388–400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Reikvam, A. M. Olsnes, B. T. Gjertsen, E. Ersvar, and O. Bruserud, “Nuclear factor-κB signaling: a contributor in leukemogenesis and a target for pharmacological intervention in human acute myelogenous leukemia,” Critical Reviews in Oncogenesis, vol. 15, no. 1-2, pp. 1–41, 2009. View at Google Scholar · View at Scopus