Table of Contents Author Guidelines Submit a Manuscript
Bone Marrow Research
Volume 2014, Article ID 634874, 7 pages
http://dx.doi.org/10.1155/2014/634874
Research Article

Angiogenesis and Proliferation Index in Patients with Acute Leukemia: A Prospective Study

1Department of Pathology, JIPMER, Pondicherry 605006, India
2Department of Medicine, JIPMER, Pondicherry 605006, India

Received 25 September 2013; Revised 20 February 2014; Accepted 28 February 2014; Published 31 March 2014

Academic Editor: Peter J. Quesenberry

Copyright © 2014 Prabhavati Jothilingam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Kini, L. C. Peterson, M. S. Tallman, and M. W. Lingen, “Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial growth factor and inhibition by all-trans retinoic acid,” Blood, vol. 97, no. 12, pp. 3919–3924, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Visani, E. Ottaviani, M. Danova, R. Mangiarotti, P. Tosi, and S. Tura, “The expression of proliferation and quiescence associated antigens in acute myeloid leukemia correlates with survival duration: analysis of 15 refractory cases,” Haematologica, vol. 82, no. 3, pp. 338–340, 1997. View at Google Scholar · View at Scopus
  3. M. G. Alexandrakis, F. H. Passam, C. Dambaki, C. A. Pappa, and E. N. Stathopoulos, “The relation between bone marrow angiogenesis and the proliferation index Ki-67 in multiple myeloma,” Journal of Clinical Pathology, vol. 57, no. 8, pp. 856–860, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Aguayo, H. Kantarjian, T. Manshouri et al., “Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes,” Blood, vol. 96, no. 6, pp. 2240–2245, 2000. View at Google Scholar · View at Scopus
  5. S. Sharma, M. C. Sharma, and C. Sarkar, “Morphology of angiogenesis in human cancer: a conceptual overview, histoprognostic perspective and significance of neoangiogenesis,” Histopathology, vol. 46, no. 5, pp. 481–489, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. W. Hussong, G. M. Rodgers, and P. J. Shami, “Evidence of increased angiogenesis in patients with acute myeloid leukemia,” Blood, vol. 95, no. 1, pp. 309–313, 2000. View at Google Scholar · View at Scopus
  7. T. Padró, R. Bieker, S. Ruiz et al., “Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia,” Leukemia, vol. 16, no. 7, pp. 1302–1310, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Boveri, F. Passamonti, E. Rumi et al., “Bone marrow microvessel density in chronic myeloproliferative disorders: a study of 115 patients with clinicopathological and molecular correlations,” British Journal of Haematology, vol. 140, no. 2, pp. 162–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Fiedler, U. Graeven, S. Ergün et al., “Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia,” Blood, vol. 89, no. 6, pp. 1870–1875, 1997. View at Google Scholar · View at Scopus
  10. A. R. Perez-Atayde, S. E. Sallan, U. Tedrow, S. Connors, E. Allred, and J. Folkman, “Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia,” American Journal of Pathology, vol. 150, no. 3, pp. 815–821, 1997. View at Google Scholar · View at Scopus
  11. M. A. Pulè, C. Gullmann, D. Dennis, C. McMahon, M. Jeffers, and O. P. Smith, “Increased angiogenesis in bone marrow of children with acute lymphoblastic leukaemia has no prognostic significance,” British Journal of Haematology, vol. 118, no. 4, pp. 991–998, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Faderl, K.-A. Do, M. M. Johnson et al., “Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia,” Blood, vol. 106, no. 13, pp. 4303–4307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Koomagi, F. Zintl, A. Sauerbrey, and M. Volm, “Vascular endothelial growth factor in newly diagnosed and recurrent childhood acute lymphoblastic leukemia as measured by real-time quantitative polymerase chain reaction,” Clinical Cancer Research, vol. 7, no. 11, pp. 3381–3384, 2001. View at Google Scholar · View at Scopus
  14. C. J. Lyu, S. Y. Rha, and S. C. Won, “Clinical role of bone marrow angiogenesis in childhood acute lymphocytic leukemia,” Yonsei Medical Journal, vol. 48, no. 2, pp. 171–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Korkolopoulou, E. Apostolidou, P. M. Pavlopoulos et al., “Prognostic evaluation of the microvascular network in myelodysplastic syndromes,” Leukemia, vol. 15, no. 9, pp. 1369–1376, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Dong, Z. C. Han, and R. Yang, “Angiogenesis and antiangiogenic therapy in hematologic malignancies,” Critical Reviews in Oncology/Hematology, vol. 62, no. 2, pp. 105–118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Rodriguez-Ariza, C. Lopez-Pedrera, E. Aranda, and N. Barbarroja, “VEGF targeted therapy in acute myeloid leukemia,” Critical Reviews in Oncology/Hematology, vol. 80, no. 2, pp. 241–256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. G. J. Madlambayan, A. M. Meacham, K. Hosaka et al., “Leukemia regression by vascular disruption and antiangiogenic therapy,” Blood, vol. 116, no. 9, pp. 1539–1547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. E. Karp, I. Gojo, R. Pili et al., “Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-β -D-arabinofuranosylcytosine, mitoxantrone, and bevacizumab,” Clinical Cancer Research, vol. 10, no. 11, pp. 3577–3585, 2004. View at Publisher · View at Google Scholar · View at Scopus