Table of Contents
Biotechnology Research International
Volume 2012 (2012), Article ID 587041, 8 pages
http://dx.doi.org/10.1155/2012/587041
Research Article

Biodegradation of Used Motor Oil in Soil Using Organic Waste Amendments

1Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Microbiology, Federal University of Technology, PMB 65, Minna 920281, Nigeria
3Department of Chemical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 6 March 2012; Revised 18 April 2012; Accepted 23 April 2012

Academic Editor: Goetz Laible

Copyright © 2012 O. P. Abioye et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Mandri and J. Lin, “Isolation and characterization of engine oil degrading indigenous microorganisms in Kwazulu-Natal,” African Journal of Biotechnology, vol. 6, no. 1, pp. 23–27, 2007. View at Google Scholar · View at Scopus
  2. A. Husaini, H. A. Roslan, K. S. Y. Hii, and C. H. Ang, “Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites,” World Journal of Microbiology and Biotechnology, vol. 24, no. 12, pp. 2789–2797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Bumpus, “Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium,” Applied and Environmental Microbiology, vol. 55, no. 1, pp. 154–158, 1989. View at Google Scholar · View at Scopus
  4. A. R. Clemente, T. A. Anazawa, and L. R. Durrant, “Biodegradation of polycyclic aromatic hydrocarbons by soil fungi,” Brazilian Journal of Microbiology, vol. 32, no. 4, pp. 255–261, 2001. View at Google Scholar · View at Scopus
  5. C. E. Cerniglia and J. B. Sutherland, “Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi,” in Fungi in Bioremediation, G. M. Gadd, Ed., pp. 136–187, Cambridge University Press, Cambridge, UK, 2001. View at Google Scholar
  6. S. Mishra, J. Jyot, R. C. Kuhad, and B. Lal, “Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil,” Applied and Environmental Microbiology, vol. 67, no. 4, pp. 1675–1681, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. T. L. Propst, R. L. Lochmiller, C. W. Qualls, and K. McBee, “In situ (mesocosm) assessment of immunotoxicity risks to small mammals inhabiting petrochemical waste sites,” Chemosphere, vol. 38, no. 5, pp. 1049–1067, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. A. C. Lloyd and T. A. Cackette, “Diesel engines: environmental impact and control,” Journal of the Air and Waste Management Association, vol. 51, no. 6, pp. 809–847, 2001. View at Google Scholar · View at Scopus
  9. J. D. Van Hamme, A. Singh, and O. P. Ward, “Recent advances in petroleum microbiology,” Microbiology and Molecular Biology Reviews, vol. 67, no. 4, pp. 503–549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. W. C. Blodgett, “Water-soluble mutagen production during the bio-remediation of oil—contaminated soil,” Florida Scientist, vol. 60, no. 1, pp. 28–36, 2001. View at Google Scholar
  11. L. S. Hagwell, L. M. Delfino, and J. J. Rao, “Partitioning of polycyclic aromatic hydrocarbons from diesel fuel into water,” Environmental Science and Technology, vol. 26, no. 11, pp. 2104–2110, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Boonchan, M. L. Britz, and G. A. Stanley, “Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures,” Applied and Environmental Microbiology, vol. 66, no. 3, pp. 1007–1019, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Hollender, K. Althoff, M. Mundt, and W. Dott, “Assessing the microbial activity of soil samples, its nutrient limitation and toxic effects of contaminants using a simple respiration test,” Chemosphere, vol. 53, no. 3, pp. 269–275, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. K. T. Semple, N. M. Dew, K. J. Doick, and A. H. Rhodes, “Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil?” Environmental Pollution, vol. 140, no. 1, pp. 164–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Walworth, A. Pond, I. Snape, J. Rayner, S. Ferguson, and P. Harvey, “Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil,” Cold Regions Science and Technology, vol. 48, no. 2, pp. 84–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. S. Jørgensen, J. Puustinen, and A. M. Suortti, “Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles,” Environmental Pollution, vol. 107, no. 2, pp. 245–254, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Margesin and F. Schinner, “Bioremediation (Natural Attenuation and Biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area,” Applied and Environmental Microbiology, vol. 67, no. 7, pp. 3127–3133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Riffaldi, R. Levi-Minzi, R. Cardelli, S. Palumbo, and A. Saviozzi, “Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil,” Water, Air, and Soil Pollution, vol. 170, no. 1–4, pp. 3–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Margesin, M. Hämmerle, and D. Tscherko, “Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time,” Microbial Ecology, vol. 53, no. 2, pp. 259–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. U. J. J. Ijah and S. P. Antai, “The potential use of chicken-drop micro-organisms for oil spill remediation,” Environmentalist, vol. 23, no. 1, pp. 89–95, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. K. S. M. Rahman, J. Thahira-Rahman, P. Lakshmanaperumalsamy, and I. M. Banat, “Towards efficient crude oil degradation by a mixed bacterial consortium,” Bioresource Technology, vol. 85, no. 3, pp. 257–261, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. K. Adesodun and J. S. C. Mbagwu, “Biodegradation of waste-lubricating petroleum oil in a tropical alfisol as mediated by animal droppings,” Bioresource Technology, vol. 99, no. 13, pp. 5659–5665, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. E. Zajic and B. Supplisson, “Emulsification and degradation of “Bunker C” fuel oil by microorganisms,” Biotechnology and Bioengineering, vol. 14, no. 3, pp. 331–343, 1972. View at Google Scholar · View at Scopus
  24. K. Vaajasaari, A. Joutti, E. Schultz, S. Selonen, and H. Westerholm, “Comparisons of terrestrial and aquatic bioassays for oil-contaminated soil toxicity,” Journal of Soils and Sediments, vol. 2, no. 4, pp. 194–202, 2002. View at Google Scholar · View at Scopus
  25. G. Płaza, G. Nałȩcz-Jawecki, K. Ulfig, and R. L. Brigmon, “The application of bioassays as indicators of petroleum-contaminated soil remediation,” Chemosphere, vol. 59, no. 2, pp. 289–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. V. S. Millioli, E. L. C. Servulo, L. G. S. Sobral, and D. D. Carvalho, “Bioremediation of crude oil-bearing soil: evaluating the effect of rhamnolipid addition to soil toxicity and to crude oil biodegradation efficiency,” Global Nest Journal, vol. 11, no. 2, pp. 181–188, 2009. View at Google Scholar · View at Scopus
  27. I. O. Okoh, “Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants,” Biotechnology and Molecular Biology Reviews, vol. 1, no. 2, pp. 38–50, 2006. View at Google Scholar
  28. S. J. Kim, D. H. Choi, D. S. Sim, and Y. S. Oh, “Evaluation of bioremediation effectiveness on crude oil-contaminated sand,” Chemosphere, vol. 59, no. 6, pp. 845–852, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Frederic, P. Emilien, G. Lenaick, and D. Daniel, “Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil,” Chemosphere, vol. 58, no. 10, pp. 1439–1448, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. R. T. Palmroth, J. Pichtel, and J. A. Puhakka, “Phytoremediation of subarctic soil contaminated with diesel fuel,” Bioresource Technology, vol. 84, no. 3, pp. 221–228, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Bossert and R. Bartha, “The fate of petroleum in soil ecosystems,” in Petroleum Microbiology, R. M. Atlas, Ed., Macmillan, New York, NY, USA, 1984. View at Google Scholar
  32. M. Schaefer and F. Juliane, “The influence of earthworms and organic additives on the biodegradation of oil contaminated soil,” Applied Soil Ecology, vol. 36, no. 1, pp. 53–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Nakasaki, H. Yaguchi, Y. Sasaki, and H. Kubota, “Effects of C/N ratio on thermophilic composting of garbage,” Journal of Fermentation and Bioengineering, vol. 73, no. 1, pp. 43–45, 1992. View at Google Scholar · View at Scopus
  34. H. S. Joo, C. G. Phae, and J. Y. Ryu, “Comparison and analysis on characteristics for recycling of multifarious food waste,” Journal of KOWREC, vol. 9, pp. 117–124, 2001. View at Google Scholar
  35. H. S. Joo, M. Shoda, and C. G. Phae, “Degradation of diesel oil in soil using a food waste composting process,” Biodegradation, vol. 18, no. 5, pp. 597–605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. U. J. J. Ijah, “Studies on relative capabilities of bacterial and yeast isolates from tropical soil in degrading crude oil,” Waste Management, vol. 18, no. 5, pp. 293–299, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. H. Ahn, J. Sanseverino, and G. S. Sayler, “Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils,” Biodegradation, vol. 10, no. 2, pp. 149–157, 1999. View at Publisher · View at Google Scholar
  38. F. M. Bento, F. A. O. Camargo, B. C. Okeke, and W. T. Frankenberger, “Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation,” Bioresource Technology, vol. 96, no. 9, pp. 1049–1055, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Das and A. K. Mukherjee, “Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India,” Bioresource Technology, vol. 98, no. 7, pp. 1339–1345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Roldán-Martín, G. Calva-Calva, N. Rojas-Avelizapa, M. D. Díaz-Cervantes, and R. Rodríguez-Vázquez, “Solid culture amended with small amounts of raw coffee beans for the removal of petroleum hydrocarbon from weathered contaminated soil,” International Biodeterioration and Biodegradation, vol. 60, no. 1, pp. 35–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. K. Banks and K. E. Schultz, “Comparison of plants for germination toxicity tests in petroleum-contaminated soils,” Water, Air, and Soil Pollution, vol. 167, no. 1–4, pp. 211–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Oleszczuk, “Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals,” Ecotoxicology and Environmental Safety, vol. 69, no. 3, pp. 496–505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Molina-Barahona, L. Vega-Loyo, M. Guerrero et al., “Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process,” Environmental Toxicology, vol. 20, no. 1, pp. 100–109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Adam and H. Duncan, “Influence of diesel fuel on seed germination,” Environmental Pollution, vol. 120, no. 2, pp. 363–370, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. I. A. Ogboghodo, E. K. Iruaga, I. O. Osemwota, and J. U. Chokor, “An assessment of the effects of crude oil pollution on soil properties, germination and growth of maize (zea mays) using two crude types—forcadors light and escravos light,” Environmental Monitoring and Assessment, vol. 96, no. 1– 3, pp. 143–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Labud, C. Garcia, and T. Hernandez, “Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil,” Chemosphere, vol. 66, no. 10, pp. 1863–1871, 2007. View at Publisher · View at Google Scholar · View at Scopus