Table of Contents
Biotechnology Research International
Volume 2012, Article ID 817549, 8 pages
http://dx.doi.org/10.1155/2012/817549
Research Article

Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis

Department of Biotechnology, Anna University of Technology, Tamil Nadu, Tiruchirappalli 620024, India

Received 26 March 2012; Accepted 12 June 2012

Academic Editor: Triantafyllos Roukas

Copyright © 2012 P. Sobana Piriya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Zaldivar, J. Nielsen, and L. Olsson, “Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration,” Applied Microbiology and Biotechnology, vol. 56, no. 1-2, pp. 17–34, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Ohta, D. S. Beall, J. P. Mejia, K. T. Shanmugam, and L. O. Ingram, “Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose,” Applied and Environmental Microbiology, vol. 57, no. 10, pp. 2810–2815, 1991. View at Google Scholar · View at Scopus
  3. B. E. Wood, L. P. Yomano, S. W. York, and L. O. Ingram, “Development of industrial-medium-required elimination of the 2,3-butanediol fermentation pathway to maintain ethanol yield in an ethanologenic strain of Klebsiella oxytoca,” Biotechnology Progress, vol. 21, no. 5, pp. 1366–1372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Yanase, K. Nozaki, and K. Okamoto, “Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis,” Biotechnology Letters, vol. 27, no. 4, pp. 259–263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. P. T. Vasan, P. S. Piriya, D. I. G. Prabhu, and S. J. Vennison, “Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae,” Bioresource Technology, vol. 102, no. 3, pp. 2585–2589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. D. S. Beall and L. O. Ingram, “Genetic engineering of soft-rot bacteria for ethanol production from lignocellulose,” Journal of Industrial Microbiology, vol. 11, no. 3, pp. 151–155, 1993. View at Google Scholar · View at Scopus
  7. C. Wills, P. Kratofil, D. Londo, and T. Martin, “Characterization of the two alcohol dehydrogenases of Zymomonas mobilis,” Archives of Biochemistry and Biophysics, vol. 210, no. 2, pp. 775–785, 1981. View at Google Scholar · View at Scopus
  8. A. D. Neale, R. K. Scopes, J. M. Kelly, and R. E. Wettenhall, “The two alcohol dehydrogenases of Zymomonas mobilis: purification by differential dye ligand chromatography, molecular characterisation and physiological roles,” European Journal of Biochemistry, vol. 154, no. 1, pp. 119–124, 1986. View at Google Scholar · View at Scopus
  9. L. O. Ingram, T. Conway, D. P. Clark, G. W. Sewell, and J. F. Preston, “Genetic engineering of ethanol production in Escherichia coli,” Applied and Environmental Microbiology, vol. 53, no. 10, pp. 2420–2425, 1987. View at Google Scholar · View at Scopus
  10. A. T. Lee, A. G. Malgorzata, P. Y. Lorraine, L. O. Ingram, and A. M. Julie, “Construction and expression of an ethanol production operon in Gram-positive bacteria,” Microbiology, vol. 151, no. 12, pp. 4023–4031, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Tolan and R. K. Finn, “Fermentation of D-Xylose and L-arabinose to ethanol by Erwinia chrysanthemi,” Applied and Environmental Microbiology, vol. 53, pp. 2033–2038, 1987. View at Google Scholar
  12. E. Guedon, M. Desvaux, and H. Petitdemange, “Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering,” Applied and Environmental Microbiology, vol. 68, no. 1, pp. 53–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Sambrook and D. W. Russel, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA, 3rd edition, 2003.
  14. H. C. Bimboim and J. Doly, “A rapid alkaline extraction procedure for screening recombinant plasmid DNA,” Nucleic Acids Research, vol. 7, no. 6, pp. 1513–1523, 1979. View at Publisher · View at Google Scholar · View at Scopus
  15. R. D. Lillie, H. J. Conn's Biological Stains, The Williams & Wilkins, Baltimore, Md, USA, 9th edition, 1977.
  16. P. Gunasekaran, T. Karunakaran, B. Cami, A. G. Mukundan, L. Preziosi, and J. Baratti, “Cloning and sequencing of the sacA gene: characterization of a sucrase from Zymomonas mobilis,” Journal of Bacteriology, vol. 172, no. 12, pp. 6727–6735, 1990. View at Google Scholar · View at Scopus
  17. A. D. Gounaris, I. Turkenkopf, S. Buckwald, and A. Young, “Pyruvate decarboxylase. I. Protein dissociation into subunits under conditions in which thiamine pyrophosphate is released,” The Journal of Biological Chemistry, vol. 246, no. 5, pp. 1302–1309, 1971. View at Google Scholar · View at Scopus
  18. J. Fibla, S. Atrian, and R. G. Duarte, “Evidence of serine-protease activity closely associated with Drosophila alcohol dehydrogenase,” European Journal of Biochemistry, vol. 211, no. 1-2, pp. 357–365, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Zhou, W. X. Ye, Y. Zhou, C. G. Zhu, M. Sun, and Z. N. Yu, “Ethanol tolerance, yield of melanin, swarming motility and growth are correlated with the expression levels of aiiA gene in Bacillus thuringiensis,” Enzyme and Microbial Technology, vol. 38, no. 7, pp. 967–974, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. B. L. Fernandes and S. O. P. Da Costa, “High efficiency of transformation of Proteus mirabilis with a pUC19 derivative vector directs the expression and secretion of the Bacillus subtilis α-amylase gene,” Journal of Microbiological Methods, vol. 26, no. 1-2, pp. 147–150, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. S. J. Vennison, Laboratory Manual for Genetic Engineering, PHI Publications, New Delhi, India, 2009.
  22. J. Jeffers, Preparation of Ethanol by Fermentation, Ouachita Baptist University, 2000.
  23. S. Fogel, R. L. Lancione, and A. E. Sewall, “Enhanced biodegradation of methoxychlor in soil under sequential environmental conditions,” Applied and Environmental Microbiology, vol. 44, no. 1, pp. 113–120, 1982. View at Google Scholar · View at Scopus
  24. N. Kiransree, M. Sridhar, and L. V. Rao, “Characterisation of thermotolerant, ethanol tolerant fermentative Saccharomyces cerevisiae for ethanol production,” Bioprocess Engineering, vol. 22, no. 3, pp. 243–246, 2000. View at Google Scholar · View at Scopus
  25. A. K. Hilaly, M. N. Karim, and J. C. Linden, “Use of an Extended Kalman Filter and development of an automated system for xylose fermentation by a recombinant Escherichia coli,” Journal of Industrial Microbiology, vol. 13, no. 2, pp. 83–89, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. H. G. Lawford and J. D. Rousseau, “Factors contributing to the loss of ethanologenicity of Escherichia coli B recombinants pLOI297 and KO11,” Applied Biochemistry and Biotechnology—Part A, vol. 57-58, pp. 293–305, 1996. View at Google Scholar · View at Scopus
  27. J. B. Doran, J. Cripe, M. Sutton, and B. Foster, “Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol,” Applied Biochemistry and Biotechnology—Part A, vol. 84–86, pp. 141–152, 2000. View at Google Scholar · View at Scopus
  28. V. Senthilkumar and P. Gunasekaran, “Bioethanol production from cellulosic substrates: engineered bacteria and process integration challenges,” Journal of Scientific and Industrial Research, vol. 64, no. 11, pp. 845–853, 2005. View at Google Scholar · View at Scopus
  29. A. P. Anand, S. J. Vennison, S. G. Sankar et al., “Digestion of cellulose, pectin, xylan and starch by the symbiotic gut bacteria in the intestine ofBombyx mori,” Insect Science, vol. 10, no. 107, pp. 1–20, 2009. View at Google Scholar
  30. X. Q. Zhao, C. Xue, X. M. Ge, W. J. Yuan, J. Y. Wang, and F. W. Bai, “Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation,” Journal of Biotechnology, vol. 139, no. 1, pp. 55–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Yazawa, H. Iwahashi, and H. Uemura, “Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae,” Yeast, vol. 24, no. 7, pp. 551–560, 2007. View at Publisher · View at Google Scholar · View at Scopus