Table of Contents
Biotechnology Research International
Volume 2013, Article ID 103960, 9 pages
http://dx.doi.org/10.1155/2013/103960
Research Article

Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis

Department of Food Science, Faculty of Food Engineering, University of Campinas, P.O. Box 6121, 13083-862 Campinas, SP, Brazil

Received 16 November 2012; Accepted 16 January 2013

Academic Editor: Triantafyllos Roukas

Copyright © 2013 Francisco Fábio Cavalcante Barros et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Schallmey, A. Singh, and O. P. Ward, “Developments in the use of Bacillus species for industrial production,” Canadian Journal of Microbiology, vol. 50, no. 1, pp. 1–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Kunst and G. Rapoport, “Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis,” Journal of Bacteriology, vol. 177, no. 9, pp. 2403–2407, 1995. View at Google Scholar · View at Scopus
  3. Z. Konsoula and M. Liakopoulou-Kyriakides, “Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates,” Bioresource Technology, vol. 98, no. 1, pp. 150–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. Syu and Y. H. Chen, “A study on the α-amylase fermentation performed by Bacillus amyloliquefaciens,” Chemical Engineering Journal, vol. 65, no. 3, pp. 237–247, 1997. View at Publisher · View at Google Scholar
  5. A. Pandey, P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan, “Advances in microbial amylases,” Biotechnology and Applied Biochemistry, vol. 31, no. 2, pp. 135–152, 2000. View at Google Scholar · View at Scopus
  6. C. E. S. Teodoro and M. L. L. Martins, “Culture conditions for the production of thermostable amylase by Bacillus sp,” Brazilian Journal of Microbiology, vol. 31, pp. 298–302, 2000. View at Publisher · View at Google Scholar
  7. W. C. A. Nascimento, C. R. Silva, R. V. Carvalho, and M. L. L. Martins, “Otimização de um meio de cultura para a produção de proteases por um Bacillus sp,” Ciência e Tecnologia de Alimentos, vol. 27, pp. 417–421, 2007. View at Publisher · View at Google Scholar
  8. J. R. Martín, M. Nus, J. V. S. Gago, and J. M. Sánchez-Montero, “Selective esterification of phthalic acids in two ionic liquids at high temperatures using a thermostable lipase of Bacillus thermocatenulatus: a comparative study,” Journal of Molecular Catalysis B, vol. 52-53, pp. 162–167, 2008. View at Publisher · View at Google Scholar
  9. E. Lesuisse, K. Schanck, and C. Colson, “Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme,” European Journal of Biochemistry, vol. 216, no. 1, pp. 155–160, 1993. View at Google Scholar · View at Scopus
  10. T. Eggert, U. Brockmeier, M. J. Dröge, W. J. Quax, and K. E. Jaeger, “Extracellular lipases from Bacillus subtilis: regulation of gene expression and enzyme activity by amino acid supply and external pH,” FEMS Microbiology Letters, vol. 225, no. 2, pp. 319–324, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Nitschke, C. Ferraz, and G. M. Pastore, “Selection of microorganisms for biosurfactant production using agroindustrial wastes,” Brazilian Journal of Microbiology, vol. 35, no. 1-2, pp. 81–85, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. F. F. C. Barros, A. N. Ponezi, and G. M. Pastore, “Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate,” Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 9, pp. 1071–1078, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S.-F. Lin, C.-M. Chiou, and Y.-C. Tsai, “Effect of triton X-100 on alkaline lipase production by Pseudomonas pseudoalcaligenes F-111,” Biotechnology Letters, vol. 17, no. 9, pp. 959–962, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. Giongo, Caracterização e aplicação de proteases produzidas por linhagens de Bacillus sp [thesis], Universidade Federal do Rio Grande do Sul, 2006.
  15. G. A. Macedo, G. M. Pastore, H. A. Sato, and Y. K. Park, Bioquímica Experimental de Alimentos, Editora Varela, São Paulo, Brazil, 2005.
  16. J. N. Dos Prazeres, J. A. B. Cruz, and G. M. Pastore, “Characterization of alkaline lipase from Fusarium oxysporum and the effect of different surfactants and detergents on the enzyme activity,” Brazilian Journal of Microbiology, vol. 37, no. 4, pp. 505–509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. N. Prazeres, Produção, purificação e caracterização da lipase alcalina de Fusarium oxysporum [thesis], Universidade Estadual de Campinas, 2006.
  18. M. Nitschke, Produção e caracterização de biossurfatante de Bacillus subtilis utilizando manipueira como substrato [thesis], Universidade Estadual de Campinas, 2004.
  19. F. Cardenas, E. Alvarez, M. S. De Castro-Alvarez et al., “Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases,” Journal of Molecular Catalysis B, vol. 14, no. 4–6, pp. 111–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. F. F. C. Barros, A. P. Dionísio, J. C. Silva, and G. M. Pastore, “Potential uses of cassava wastewater in biotechnological processes,” in Cassava: Farming, Uses, and Economic Impact, C. M. Pace, Ed., pp. 33–54, Nova Science, New York, NY, USA, 2011. View at Google Scholar
  21. R. F. Perna, Fracionamento de surfactina em coluna de bolhas e espuma [M.S. thesis], Universidade Estadual de Campinas, Campinas, Brazil, 2010.