Table of Contents
Biotechnology Research International
Volume 2013, Article ID 435154, 7 pages
http://dx.doi.org/10.1155/2013/435154
Research Article

Production of Pectinolytic Enzymes by the Yeast Wickerhanomyces anomalus Isolated from Citrus Fruits Peels

1Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Felix de Azara 1552, N3300LQH Posadas, Argentina
2Universidad Nacional del Chaco Austral, Comandante Fernández 755, H3700LGO Presidencia Roque Sáenz Peña, Argentina
3Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Calle 47 y 115, B1900ASH La Plata, Argentina

Received 26 November 2012; Accepted 7 February 2013

Academic Editor: Triantafyllos Roukas

Copyright © 2013 María A. Martos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Jayani, S. Saxena, and R. Gupta, “Microbial pectinolytic enzymes: a review,” Process Biochemistry, vol. 40, no. 9, pp. 2931–2944, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Tari, N. Gögus, and F. Tokatli, “Optimization of biomass, pellet size and polygalacturonase production by Aspergillus sojae ATCC 20235 using response surface methodology,” Enzyme and Microbial Technology, vol. 40, no. 5, pp. 1108–1116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Fernández-González, J. F. Úbeda, T. G. Vasudevan, R. R. Cordero Otero, and A. I. Briones, “Evaluation of polygalacturonase activity in Saccharomyces cerevisiae wine strains,” FEMS Microbiology Letters, vol. 237, no. 2, pp. 261–266, 2004. View at Google Scholar
  4. W. Pilnik and A. G. J. Voragen, “The significance of endogenous and exogenous pectic enzymes in fruit and vegetable processing,” in Food Enzymology, vol. 1, pp. 303–336, 1991. View at Google Scholar
  5. J. A. V. Costa, E. Colla, G. Magagnin, L. Oliveria dos Santos, M. Vendruscolo, and T. E. Bertolin, “Simultaneous amyloglucosidase and exo-polygalacturonase production by Aspergillus niger using solid-state fermentation,” Brazilian Archives of Biology and Technology, vol. 50, no. 5, pp. 759–766, 2007. View at Google Scholar · View at Scopus
  6. T. Nakamura, R. A. Hours, and T. Sakai, “Enzymatic maceration of vegetables with protopectinases,” Journal of Food Science, vol. 60, pp. 468–472, 1995. View at Publisher · View at Google Scholar
  7. S. N. Gummadi and T. Panda, “Purification and biochemical properties of microbial pectinases: a review,” Process Biochemistry, vol. 38, no. 7, pp. 987–996, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Geralda da Silva, M. de Fátima Borges, C. Medina, R. Hilsdorf Piccoli, and R. Freitas Schwan, “Pectinolytic enzymes secreted by yeasts from tropical fruits,” FEMS Yeast Research, vol. 5, no. 9, pp. 859–865, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. P. Kurtzman, C. J. Robnett, and E. Basehoar-Powers, “Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov.,” FEMS Yeast Research, vol. 8, no. 6, pp. 939–954, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. F. Cavalitto, J. A. Arcas, and R. A. Hours, “Pectinase production profile of Aspergillus foetidus in solid state cultures at different acidities,” Biotechnology Letters, vol. 18, no. 3, pp. 251–256, 1996. View at Google Scholar · View at Scopus
  11. G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959. View at Google Scholar · View at Scopus
  12. P. Albersheim, H. Neukom, and H. Deuel, “Splitting of pectin chain molecules in neutral solutions,” Archives of Biochemistry and Biophysics, vol. 90, no. 1, pp. 46–51, 1960. View at Google Scholar · View at Scopus
  13. C. Vilariño, J. F. Del Giorgio, R. A. Hours, and O. Cascone, “Spectrophotometric method for fungal pectinesterase activity determination,” LWT—Food Science and Technology, vol. 26, no. 2, pp. 107–110, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. J. C. Contreras Esquivel and C. E. Voget, “Purification and partial characterization of an acidic polygalacturonase from Aspergillus kawachii,” Journal of Biotechnology, vol. 110, no. 1, pp. 21–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Yoshitake, T. Numata, T. Katsuragi, R. A. Hours, and T. Sakai, “Purification and characterization of a pectin-releasing enzyme produced by Kluyveromyces wickerhamii,” Journal of Fermentation and Bioengineering, vol. 77, no. 4, pp. 370–375, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. R. F. Schwan, R. M. Cooper, and A. E. Wheals, “Endopolygalacturonase secretion by Kluyveromyces marxianus and other cocoa pulp-degrading yeasts,” Enzyme and Microbial Technology, vol. 21, no. 4, pp. 234–244, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. A. R. García, M. I. Balbín, J. C. Cabrera, and A. Castelvi, “Actividad endopoligalacturonasa de un preparado de la levadura Kluyveromyces marxianus aislada de la pulpa de café,” Cultivos Tropicales, vol. 23, no. 1, pp. 67–72, 2002. View at Google Scholar
  18. P. Blanco, C. Sieiro, and T. G. Villa, “Production of pectic enzymes in yeasts,” FEMS Microbiology Letters, vol. 175, no. 1, pp. 1–9, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Radoi, M. Kishida, and H. Kawasaki, “Endo-polygalacturonase in Saccharomyces wine yeasts: effect of carbon source on enzyme production,” FEMS Yeast Research, vol. 5, no. 6-7, pp. 663–668, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Masoud and L. Jespersen, “Pectin degrading enzymes in yeasts involved in fermentation of coffea arabica in East Africa,” International Journal of Food Microbiology, vol. 110, no. 3, pp. 291–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. F. M. Rombouts and W. Pilnik, “Pectic enzymes,” in Microbial Enzymes and Bioconversions, A. H. Rose, Ed., pp. 227–282, Academic Press, London, UK, 1980. View at Google Scholar
  22. D. B. Pedrolli and E. C. Carmona, “Purification and characterization of the exopolygalacturonase produced by Aspergillus giganteus in submerged cultures,” Journal of Industrial Microbiology and Biotechnology, vol. 37, no. 6, pp. 567–573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Blanco, C. Sieiro, A. Díaz, and T. G. Villa, “Differences between pectic enzymes produced by laboratory and wild-type strains of Saccharomyces cerevisiae,” World Journal of Microbiology and Biotechnology, vol. 13, no. 6, pp. 711–712, 1997. View at Google Scholar · View at Scopus
  24. S. Moyo, B. A. Gashe, E. K. Collison, and S. Mpuchane, “Optimising growth conditions for the pectinolytic activity of Kluyveromyces wickerhamii by using response surface methodology,” International Journal of Food Microbiology, vol. 85, no. 1-2, pp. 87–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. E. S. Martins, D. Silva, R. S. R. Leite, and E. Gomes, “Purification and characterization of polygalacturonase produced by thermophilic Thermoascus aurantiacus CBMAI-756 in submerged fermentation,” Antonie van Leeuwenhoek, vol. 91, no. 3, pp. 291–299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Blanco, C. Sieiro, A. Diaz, and T. G. Villa, “Production and partial characterization of an endopolygalacturonase from Saccharomyces cerevisiae,” Canadian Journal of Microbiology, vol. 40, no. 11, pp. 974–977, 1994. View at Google Scholar · View at Scopus
  27. C. Tari, N. Dogan, and N. Gogus, “Biochemical and thermal characterization of crude exo-polygalacturonase produced by Aspergillus sojae,” Food Chemistry, vol. 111, no. 4, pp. 824–829, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. F. Cavalitto, R. A. Hours, and C. F. Mignone, “Growth and protopectinase production of Geotrichum klebahnii in batch and continuous cultures with synthetic media,” Journal of Industrial Microbiology and Biotechnology, vol. 25, no. 5, pp. 260–265, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. N. L. Rojas, S. F. Cavalitto, C. F. Mignone, and R. A. Hours, “Role of PPase-SE in Geotrichum klebahnii, a yeast-like fungus able to solubilize pectin,” Electronic Journal of Biotechnology, vol. 11, no. 1, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus