Table of Contents
Biotechnology Research International
Volume 2014 (2014), Article ID 642385, 10 pages
http://dx.doi.org/10.1155/2014/642385
Research Article

Kojic Acid Production from Agro-Industrial By-Products Using Fungi

1Botany Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
2Microbial Biotechnology Department, National Research Center, Dokki 12622, Egypt

Received 4 November 2013; Revised 4 February 2014; Accepted 4 February 2014; Published 23 March 2014

Academic Editor: Manuel Canovas

Copyright © 2014 Ismael A. El-Kady et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Niwa and H. Akamatsu, “Kojic acid scavenges free radicals while potentiating leukocyte functions including free radical generation,” Inflammation, vol. 15, no. 4, pp. 303–315, 1991. View at Google Scholar · View at Scopus
  2. List of Food Additives Other Than Chemical Synthetics, notification no. 207, Ministry of Health and Welfare, Tokyo, Japan, 1989.
  3. F. C. Wehner, P. G. Thiel, S. J. van Rensburg, and I. P. C. Demasius, “Tested on chicken embryos,” Toxicology Letters, vol. 13, pp. 239–245, 1978. View at Google Scholar
  4. A. J. St. Angelo, J. R. Vercellotti, H. P. Dupuy, and A. M. Spanier, “Assessment of beef flavor quality, a multidisciplinary approach,” Food Technology, vol. 42, pp. 133–138, 1988. View at Google Scholar
  5. R. F. Theiler, K. Sato, T. G. Aspelund, and A. F. Miller, “Inhibition of N-nitrosamine formation in a cured ground pork belly model system,” Journal of Food Science, vol. 49, no. 2, pp. 341–344, 1984. View at Google Scholar · View at Scopus
  6. P. J. Curtis, “Chemical introduction of local reddening in strawberry fruits,” Journal of the Science of Food and Agriculture, vol. 28, pp. 243–246, 1977. View at Publisher · View at Google Scholar
  7. H. Tanigaki, H. Obata, and T. Tokuyama, “The determination of kojic acid using the stopped-flow method,” Bulletin of the Chemical Society of Japan, vol. 35, pp. 3195–3197, 1980. View at Google Scholar
  8. M. Uher, J. Brtko, O. Rajniakova, M. Kovac, and E. Novotana, “Kojic acid and its derivatives in cosmetics and health protection,” Parfuem-Kosmetik, vol. 74, pp. 554–556, 1993. View at Google Scholar
  9. M. Rosfarizan, S. M. Mohd, S. Nurashikin, M. S. Madihah, and B. A. Arbakariya, “Kojic acid: applications and development of fermentation process for production,” Biotechnology and Molecular Biology Reviews, vol. 5, no. 2, pp. 24–37, 2010. View at Google Scholar
  10. R. L. Beard and G. S. Walton, “Kojic acid as an insecticidal mycotoxin,” Journal of Invertebrate Pathology, vol. 14, no. 1, pp. 53–59, 1969. View at Google Scholar · View at Scopus
  11. S. Y. Shetty and R. M. Sathe, “Sequential determination of thorium and rare earths with EDTA and kojic acid,” Talanta, vol. 23, no. 1, pp. 46–47, 1976. View at Google Scholar · View at Scopus
  12. F. C. Wehner, P. G. Thiel, S. J. van Rensburg, and I. P. C. Demasius, “Mutagenicity to Salmonella typhimurium of some Aspergillus and Penicillium mycotoxins,” Mutation Research, vol. 58, no. 2-3, pp. 193–203, 1978. View at Google Scholar · View at Scopus
  13. I. A. El-kady, M. H. Moubasher, and M. Eman Mostafa, “Glycerol production by two filamentous fungi grown at different ionic and monionic osmotics and cheese whey,” Folia Microbiologica, vol. 39, no. 3, pp. 203–207, 1994. View at Publisher · View at Google Scholar
  14. A. A. Zohri, “Glycerol production from cheese whey by selected fungal cultures,” Journal of Food Science and Technology, vol. 37, no. 5, pp. 533–538, 2000. View at Google Scholar · View at Scopus
  15. N. R. Khamaruddin, M. Basri, G. E. C. Lian et al., “Enzymatic synthesis and characterization of palm-based kojic acid ester,” Journal of Oil Palm Research, vol. 20, pp. 461–469, 2008. View at Google Scholar
  16. I. A. El-kady, A. A. Zohri, E. M. Mostafa, and S. M. Ragaa, “Lipid and sterol production by moulds on sugar can molasses by products,” in Proceeding of the 1st International Conference on Fungi: Hopes and Challenges, vol. 1, pp. 87–98, Al-Azhar University, Cairo, Egypt, September 1996.
  17. E. M. Mostafa and A. A. Zohri, “Utilization of sugar cane molasses for lipid, sterol and ergosterol production by Cochliobolus spicifer Nelson,” African Journal of Mycology and Biotechnology, vol. 5, no. 2, pp. 63–72, 1997. View at Google Scholar
  18. S. S. El-Maraghy, A. A. Zohri, and E. M. S. A. Mostafa, “Accumulation of lipid and sterol by some isolates of Aspergillus niger and A. flavus groups utilizing whey under the influence of trace elements,” in Proceedings of the 3rd Saudi Symposium on Food and Nutrition, pp. 107–116, Faculty of Agriculture, King Saud University, October 1998.
  19. M. S. M. Abd-El-Galil, Side chain degradation and some biological transformations of progesterone by fungi [Ph.D. thesis], Department of Botany, Faculty of Science, Assiut University, Assiut, Egypt, 2000.
  20. S. M. Ragaa Kotby, Production of cyclosporins (immunosuppressive drugs) by fungi [Ph.D. thesis], Department of Botany, Faculty of Science, Assiut University, Assiut, Egypt, 2006.
  21. J.-M. Noh, S.-Y. Kwak, H.-S. Seo, J.-H. Seo, B.-G. Kim, and Y.-S. Lee, “Kojic acid-amino acid conjugates as tyrosinase inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 19, pp. 5586–5589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. P. D. Rodrigues, A. S. C. Carvalho, A. S. Santos, C. N. Alves, J. L. M. do Nascimento, and E. O. Silva, “Kojic acid, a secondary metabolite from Aspergillus sp., acts as an inducer of macrophage activation,” Cell Biology International, vol. 35, no. 4, pp. 335–343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. S. Madiha, A. G. Baharuddin, M. I. A. Karim et al., “Cultivation characteristics during kojic acid fermentation by local fungus, mutant strain 44-1,” in Proceedings of the 2nd UNESCO National Workshop on Promotion of Microbiology in Malaysia, Universiti Pertanian Malaysia, Selangor, Malaysia, 1993.
  24. S. M. Kharchenko, “The biosynthesis of kojic acid by Aspergillus flavus link strains isolated from feed,” Mikrobiolohichnyi Zhurnal, vol. 61, no. 4, pp. 15–21, 1999. View at Google Scholar · View at Scopus
  25. M. El Khadem, M. S. Tewfik, and Y. A. Hamdi, “The stimulatory effect of kojic acid on the production of aflatoxin by isolates of Aspergillus flavus link,” Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, vol. 131, no. 6, pp. 497–500, 1976. View at Google Scholar · View at Scopus
  26. P. M. Scott, “Mycotoxins in feeds and ingredients and their origin,” Journal of Food Protection, vol. 41, pp. 385–398, 1978. View at Google Scholar
  27. S. N. Kharchenko, A. I. Yatsyshin, and L. Y. Magdenko, “Koetoxicosis (kojic acid poisoning) in poultry,” Veterinariya, vol. 9, pp. 70–73, 1986. View at Google Scholar
  28. S. N. Kharchenko, A. I. Iatsyshin, E. M. Tea, N. K. Pototskiǐ, and O. I. Pavlenko, “The species composition of the micromycetes in feed and their role in animal kojic acid toxicosis,” Mikrobiologicheskii Zhurnal, vol. 55, no. 3, pp. 78–84, 1993. View at Google Scholar · View at Scopus
  29. S. E. Megalla, A. Y. Nassar, and M. A. Gohar, “The role of copper(I)-nicotinic acid complex on kojic acid biosynthesis by Aspergillus flavus,” Journal of Basic Microbiology, vol. 27, no. 1, pp. 29–33, 1987. View at Google Scholar · View at Scopus
  30. S. H. El-Sharkawy, “Kojic acid production from cocoa juice by Aspergillus flavus entrapped in calcium alginate,” Bollettino Chimico Farmaceutico, vol. 134, no. 6, pp. 316–319, 1995. View at Google Scholar · View at Scopus
  31. A. B. Ariff, M. Rosfarizan, L. S. Herng, S. Madihah, and M. I. A. Karim, “Kinetics and modelling of kojic acid production by Aspergillus flavus link in batch fermentation and resuspended mycelial system,” World Journal of Microbiology and Biotechnology, vol. 13, no. 2, pp. 195–201, 1997. View at Google Scholar · View at Scopus
  32. M. Manabe, T. Goto, K. Tanaka, and S. Matsuura, “The capabilities of Aspergillus flavus group to produce aflatoxins and kojic acid,” Report of National Food Research Institute, vol. 38, pp. 115–120, 1981. View at Google Scholar
  33. M. Manabe, K. Tanaka, T. Goto, and S. Matsura, “Producing capability of kojic acid and aflatoxin by mould,” Developments in Food Science, vol. 7, pp. 4–14, 1984. View at Google Scholar
  34. A. H. Moubasher, M. I. A. Abdel-Kader, and I. A. El-Kady, “Toxigenic fungi isolated from Roquefort cheese,” Mycopathologia, vol. 66, no. 3, pp. 187–190, 1979. View at Google Scholar · View at Scopus
  35. I. A. El-kady, M. B. Mazen, I. S. A. Abd Allah, and A. H. Elyas, “Toxigenicity and toxins produced by fungi isolated from clinically positive pneumonic cases of buffalo Calves,” Assiut Veterinary Medical Journal, vol. 12, pp. 85–88, 1984. View at Google Scholar
  36. C. I. Wei, I. S. Huang, J. S. Chen, M. R. Marshall, and K. I. Chung, “Production of kojic acid by Aspergillus candidus in three culture media,” Journal of Food Protection, vol. 54, pp. 546–548, 1991. View at Google Scholar
  37. F. W. Parrish, B. J. Wiley, E. G. Simmons, and L. Long Jr., “Production of aflatoxins and kojic acid by species of Aspergillus and Penicillium,” Applied Microbiology, vol. 14, no. 1, p. 139, 1966. View at Google Scholar · View at Scopus
  38. G. A. Burdock, M. G. Soni, and I. G. Carabin, “Evaluation of health aspects of kojic acid in food,” Regulatory Toxicology and Pharmacology, vol. 33, no. 1, pp. 80–101, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Rosfarizan and A. B. Ariff, “Kinetics of kojic acid fermentation by Aspergillus flavus using different types and concentrations of carbon and nitrogen sources,” Journal of Industrial Microbiology and Biotechnology, vol. 25, no. 1, pp. 20–24, 2000. View at Google Scholar · View at Scopus
  40. M. Y. Kwak and J. S. Rhee, “Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production,” Biotechnology and Bioengineering, vol. 39, no. 9, pp. 903–906, 1992. View at Google Scholar · View at Scopus
  41. A. Ogawa, Y. Wakisaka, T. Tanaka, T. Sakiyama, and K. Nakanishi, “Production of kojic acid by membrane-surface liquid culture of Aspergillus oryzae NRRL484,” Journal of Fermentation and Bioengineering, vol. 80, no. 1, pp. 41–45, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Wakisaka, T. Segawa, K. Imamura, T. Sakiyama, and K. Nakanishi, “Development of a cylindrical apparatus for membrane-surface liquid culture and production of kojic acid using Aspergillus oryzae NRRL484,” Journal of Fermentation and Bioengineering, vol. 85, no. 5, pp. 488–494, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Kitada, H. Ueyama, E. Suzuki, and T. Fukumbara, “Studies on kojic acid fermentation. 1: culture conditions in submerged culture,” Journal of Fermentation Technology, vol. 45, pp. 1101–1107, 1967. View at Google Scholar
  44. M. Rosfarizan, A. Arbakariya, M. Ali Hassan, M. I. Abdul Karim, S. Hiroshi, and S. Suteaki, “Importance of carbon source feeding and pH control strategies for maximum kojic acid production from sago starch by Aspergillus flavus,” Journal of Bioscience and Bioengineering, vol. 94, no. 2, pp. 99–105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. S. E. Ashari, R. Mohamad, A. Ariff, M. Basri, and A. B. Salleh, “Optimization of enzymatic synthesis of palm-based kojic acid ester using response surface methodology,” Journal of Oleo Science, vol. 58, no. 10, pp. 503–510, 2009. View at Google Scholar · View at Scopus
  46. A. H. El-Refai, Physiological and biochemical studies on the metabolism of fats and sterols in fungi [Ph.D. thesis], Cairo University, Giza, Egypt, 1964.
  47. M. S. Khalifa, Studies on production of single cell protein from vinasse [M.S. thesis], Sugar Technology Research Institute, Assiut University, Assiut, Egypt, 2003.
  48. L.-S. T. Lai, T.-H. Tsai, T. C. Wang, and T.-Y. Cheng, “The influence of culturing environments on lovastatin production by Aspergillus terreus in submerged cultures,” Enzyme and Microbial Technology, vol. 36, no. 5-6, pp. 737–748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. A. H. El-Refai and I. A. El-kady, “Utilization of some industrial by-products for the micro-biological production of sterol from Sccharomyces fermentati,” Journal of Botany of the United Arab Republic, vol. 12, no. 1, pp. 45–54, 1969. View at Google Scholar
  50. K. M. Ghanem, N. B. Ghanem, and A. H. El-Refai, “Utilization of beet molasses for sterol production by some moulds,” Microbiologia, vol. 6, no. 1, pp. 37–44, 1990. View at Google Scholar · View at Scopus
  51. S. Kahraman and O. Yeilada, “Industrial and agricultural wastes as substrates for laccase production by white-rot fungi,” Folia Microbiologica, vol. 46, no. 2, pp. 133–136, 2001. View at Google Scholar · View at Scopus
  52. L. A. R. Sallam, A.-M. H. El-Refai, A.-H. A. Hamdy, H. A. El-Minofi, and I. S. Abdel-Salam, “Role of some fermentation parameters on cyclosporin A production by a new isolate of Aspergillus terreus,” Journal of General and Applied Microbiology, vol. 49, no. 6, pp. 321–328, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. S. A. El-Aasar, “Cultural conditions studies on kojic acid production by Aspergillus parasiticus,” International Journal of Agriculture and Biology, vol. 8, pp. 468–473, 2006. View at Google Scholar
  54. P. Bajpai, P. K. Agrawal, and L. Vishwanathan, “Kojic acid synthesis and propertie,” Journal of Scientific & Industrial Research, vol. 41, pp. 185–194, 1982. View at Google Scholar
  55. R. Mohamad and A. B. Ariff, “Biotransformation of various carbon sources to kojic acid by cell-bound enzyme system of A. flavus link 44-1,” Biochemical Engineering Journal, vol. 35, no. 2, pp. 203–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Futamura, H. Ishihara, T. Tamura et al., “Kojic acid production in an airlift bioreactor using partially hydrolyzed raw corn starch,” Journal of Bioscience and Bioengineering, vol. 92, no. 4, pp. 360–365, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. M. S. LeBlanc and H. A. Akers, “Maltol and ethyl maltol, from larch tree to successful food additives,” Food Technology, vol. 26, pp. 78–87, 1989. View at Google Scholar
  58. G. J. Nohynek, D. Kirkland, D. Marzin, H. Toutain, C. Leclerc-Ribaud, and H. Jinnai, “An assessment of the genotoxicity and human health risk of topical use of kojic acid [5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one],” Food and Chemical Toxicology, vol. 42, no. 1, pp. 93–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Nakayama, T. Ebihara, N. Satoh, and T. Jinnai, “Depigmentation agents,” in Cosmeceuticals: Drugs vs. Cosmetics, P. Elsner and H. Maibach, Eds., pp. 123–144, Marcel Dekker, New York, NY, USA, 2001. View at Google Scholar
  60. Anon, Sansei Pharmaceutical Company, Japan. Personal Communications, 1992.
  61. J. S. Chen, C. Wei, and M. R. Marshall, “Inhibition mechanism of kojic acid on polyphenol oxidase 1,” Journal of Agricultural and Food Chemistry, vol. 39, no. 11, pp. 1897–1901, 1991. View at Google Scholar · View at Scopus