Table of Contents
Computational Biology Journal
Volume 2013 (2013), Article ID 303645, 13 pages
Research Article

Assessing the Impact of Drug Resistance on the Transmission Dynamics of Typhoid Fever

Department of Mathematics, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe

Received 20 February 2013; Revised 17 May 2013; Accepted 20 May 2013

Academic Editor: Markus Rehm

Copyright © 2013 S. Mushayabasa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Typhoid fever continues to be a major public health problem in the developing world. Antibiotic therapy has been the main stay of treating typhoid fever for decades. The emergence of drug-resistant typhoid strain in the last two decades has been a major problem in tackling this scourge. A mathematical model for investigating the impact of drug resistance on the transmission dynamics of typhoid fever is developed. The reproductive number for the model has been computed. Numerical results in this study suggest that when a typhoid outbreak occurs with more drug-sensitive cases than drug-resistant cases, then it may take 10–15 months for symptomatic drug-resistant cases to outnumber all typhoid cases, and it may take an average of 15–20 months for nonsymptomatic drug-resistant cases to outnumber all drug-sensitive cases.