Table of Contents
Computational Biology Journal
Volume 2013, Article ID 898090, 12 pages
http://dx.doi.org/10.1155/2013/898090
Research Article

Two-Stage Approach for Protein Superfamily Classification

Department of Computer Science & Engineering, N.I.T., Rourkela, Odisha 769008, India

Received 26 February 2013; Revised 3 June 2013; Accepted 3 June 2013

Academic Editor: Qianzhong Li

Copyright © 2013 Swati Vipsita and Santanu Ku. Rath. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Blekas, D. I. Fotiadis, and A. Likas, “Motif-based protein sequence classification using neural networks,” Journal of Computational Biology, vol. 12, no. 1, pp. 64–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, “Markov chain and hidden Markov model,” in Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, chapter 3, pp. 47–65, Cambridge University Press, 1998. View at Google Scholar
  3. C. Wu, M. Berry, S. Shivakumar, and J. McLarty, “Neural networks for full-scale protein sequence classification: sequence encoding with singular value decomposition,” Machine Learning, vol. 21, no. 1-2, pp. 177–193, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Edgardo, FerrAn, P. Ferrara, and B. Pflugfelder, “Protein classification using neural networks,” in Proceedings of the International Conference on Intelligent Systems for Molecular Biology, vol. 1, pp. 127–135, 1993.
  5. J. T. L. Wang, Q. Ma, D. Shasha, and C. H. Wu, “New techniques for extracting features from protein sequences,” IBM Systems Journal, vol. 40, no. 2, pp. 426–441, 2001. View at Google Scholar · View at Scopus
  6. D. Wang, N. Kion Lee, and T. S. Dillon, “Extraction and optimization of fuzzy protein sequences classification rules using GRBF neural networks,” Neural Information Processing-Letters and Reviews, vol. 1, no. 1, pp. 53–59, 2003. View at Google Scholar
  7. E. G. Mansoori, M. J. Zolghadri, S. D. Katebi, H. Mohabatkar, R. Boostani, and M. H. Sadreddini, “Generating fuzzy rules for protein classification,” Iranian Journal of Fuzzy Systems, vol. 5, no. 2, pp. 21–33, 2008. View at Google Scholar · View at Scopus
  8. L. French, A. Ngom, and L. Rueda, “Fast protein superfamily classification using principal component null space analysis,” in Advances in Artificial Intelligence, vol. 3501, pp. 158–169, 2005. View at Google Scholar
  9. D. Wang and G. B. Huang, “Protein sequence classification using extreme learning machine,” in Proceedings of theInternational Joint Conference on Neural Networks (IJCNN '05), vol. 3, pp. 1406–1411, 2005.
  10. X.-M. Zhao, J.-X. Du, and H.-Q. Wang, “A new technique for extracting features from protein sequences,” in Proceedings of the International conference on Intelligent Computing, pp. 1223–1232, August 2005.
  11. E. G. Mansoori, M. J. Zolghadri, and S. D. Katebi, “Protein superfamily classification using fuzzy rule-based classifier,” IEEE Transactions on Nanobioscience, vol. 8, no. 1, pp. 92–99, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Zainuddin and M. Kumar, “Radial basis function neural networks in protein sequence classification,” Malaysian Journal of Mathematical Sciences, vol. 2, no. 2, pp. 195–204, 2008. View at Google Scholar · View at Scopus
  13. S. Bandyopadhyay, “An efficient technique for superfamily classification of amino acid sequences: feature extraction, fuzzy clustering and prototype selection,” Fuzzy Sets and Systems, vol. 152, no. 1, pp. 5–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. X.-M. Zhao, D.-S. Huang, and Y.-M. Cheung, “A novel hybrid GA/RBFNN technique for protein sequences classification,” Protein and Peptide Letters, vol. 12, no. 4, pp. 383–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. X.-M. Zhao, Y.-M. Cheung, and D.-S. Huang, “A novel approach to extracting features from motif content and protein composition for protein sequence classification,” Neural Networks, vol. 18, no. 8, pp. 1019–1028, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Dash and H. Liu, “Feature selection for classification,” Intelligent Data Analysis, vol. 1, pp. 131–156, 1997. View at Google Scholar
  17. C. Wu, G. Whitson, J. McLarty, A. Ermongkonchai, and T.-C. Chang, “Protein classification artificial neural system,” Protein Science, vol. 1, no. 5, pp. 667–677, 1992. View at Google Scholar · View at Scopus
  18. Y. Bengio and Y. Grandvalet, “No unbiased estimator of the variance of K-fold cross-validation’,” Journal of Machine Learning Research, vol. 5, pp. 1089–1105, 2004. View at Google Scholar
  19. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classification,” ACM SIGKDD Explorations Newsletter, vol. 12, no. 1, pp. 40–48, 2010. View at Google Scholar
  21. S. Sharma, V. Kumar, T. S. Rani, S. D. Bhavani, and S. B. Raju, “Application of neural networks for protein sequence classification,” in Proceedings of International Conference on Intelligent Sensing and Information Processing (ICISIP '04), pp. 325–328, January 2004. View at Scopus
  22. A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: a review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 4–37, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Ghosh and S. Dehuri, “Evolutionary algorithms for multi-criterion optimization: a survey,” International Journal of Computing and Information Sciences, vol. 2, no. 1, pp. 38–57, 2004. View at Google Scholar
  24. E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms: empirical results,” Evolutionary Computation, vol. 8, no. 2, pp. 173–195, 2000. View at Google Scholar · View at Scopus
  25. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Farina, K. Deb, and P. Amato, “Dynamic multiobjective optimization problems: test cases, approximations, and applications,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 5, pp. 425–442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Balci and V. Atalay, “PCA for gender estimation: which eigenvectors contribute?” in Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), pp. 363–366, IEEE Computer Society, Washington, DC, USA, 2002.
  28. Z. Sun, G. Bebis, and R. Miller, “Object detection using feature subset selection,” Pattern Recognition, vol. 37, no. 11, pp. 2165–2176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Neruda and P. Kudová, “Learning methods for radial basis function networks,” Future Generation Computer Systems, vol. 21, no. 7, pp. 1131–1142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Steve Billings and G. L. Zheng, “Radial basis function network Configuration using Genetic Algorithms,” Neural Networks, vol. 8, no. 6, pp. 877–890, 1995. View at Google Scholar
  31. L. Guo, D.-S. Huang, and W. Zhao, “Combining genetic optimisation with hybrid learning algorithm for radial basis function neural networks,” Electronics Letters, vol. 39, no. 22, pp. 1600–1601, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. J. González, I. Rojas, J. Ortega, H. Pomares, J. Fernández, and A. Fco, “Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation,” IEEE Transactions on Neural Networks, vol. 14, no. 6, pp. 1478–1495, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Hatanaka, N. Kondo, and K. Uosaki, “Multiobjective structure selection for radial basis function networks based on Genetic Algorithm,” in Proceedings of the Congress on Evolutionary Computation, vol. 2, pp. 1095–1100, 2003.
  34. Z.-Q. Zhao and D.-S. Huang, “A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability,” Applied Mathematical Modelling, vol. 31, no. 7, pp. 1271–1281, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. N. Qasem and S. M. Shamsuddin, “Generalization improvement of radial basis function network based on multi-objective particle swarm optimization,” Journal of Artificial Intelligence, vol. 3, no. 1, pp. 1–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Majid Zirkohi, M. Mihammad, Fateh, and Ali Akbarzade, “Design of Radial basis function network using adaptive particle swarm optimization and orthogonal least squares,” Journal of Software Engineering and Applications, vol. 3, pp. 704–708, 2010. View at Google Scholar
  37. S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learning algorithm for radial basis function networks,” IEEE Transactions on Neural Networks, vol. 2, no. 2, pp. 302–309, 1991. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Chen, P. M. Grant, and C. F. N. Cowan, “Orthogonal least-squares algorithm for training multioutput radial basis function networks,” IEE Proceedings on Radar and Signal Processing, vol. 139, no. 6, pp. 378–384, 1992. View at Google Scholar
  39. X. Hong and S. A. Billings, “Givens rotation based fast backward elimination algorithm for RBF neural network pruning,” IEE Proceedings on Control Theory and Applications, vol. 144, no. 5, pp. 381–384, 1997. View at Google Scholar
  40. D. L. Yu, J. B. Gomm, and D. Williams, “A recursive orthogonal least squares algorithm for training RBF networks,” Neural Processing Letters, vol. 5, no. 3, pp. 167–176, 1997. View at Google Scholar · View at Scopus
  41. J. B. Gomm and D. L. Yu, “Selecting radial basis function network centers with recursive orthogonal least squares training,” IEEE Transactions on Neural Networks, vol. 11, no. 2, pp. 306–314, 2000. View at Publisher · View at Google Scholar · View at Scopus