Table of Contents
Chemotherapy Research and Practice
Volume 2012, Article ID 283181, 16 pages
http://dx.doi.org/10.1155/2012/283181
Review Article

Integrin Signaling in Cancer Cell Survival and Chemoresistance

1Pavillon CHUL, Centre de Recherche du CHUQ and Faculté de Médecine, Université Laval, Québec, QC, Canada G1V 4G2
2Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA

Received 18 November 2011; Accepted 10 February 2012

Academic Editor: Hamid Morjani

Copyright © 2012 Fawzi Aoudjit and Kristiina Vuori. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. G. Giancotti and E. Ruoslahti, “Integrin signaling,” Science, vol. 285, no. 5430, pp. 1028–1032, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. J. D. Hood and D. A. Cheresh, “Role of integrins in cell invasion and migration,” Nature Reviews Cancer, vol. 2, no. 2, pp. 91–100, 2002. View at Google Scholar · View at Scopus
  3. J. W. Lee and R. Juliano, “Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways,” Molecules and Cells, vol. 17, no. 2, pp. 188–202, 2004. View at Google Scholar · View at Scopus
  4. S. M. Frisch and H. Francis, “Disruption of epithelial cell-matrix interactions induces apoptosis,” Journal of Cell Biology, vol. 124, no. 4, pp. 619–626, 1994. View at Google Scholar · View at Scopus
  5. J. E. Meredith, B. Fazeli, and M. A. Schwartz, “The extracellular matrix as a cell survival factor,” Molecular Biology of the Cell, vol. 4, no. 9, pp. 953–961, 1993. View at Google Scholar · View at Scopus
  6. S. H. Kaufmann and W. C. Earnshaw, “Induction of apoptosis by cancer chemotherapy,” Experimental Cell Research, vol. 256, no. 1, pp. 42–49, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Sethi, R. C. Rintoul, S. M. Moore et al., “Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo,” Nature Medicine, vol. 5, no. 6, pp. 662–668, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. J. S. Damiano, A. E. Cress, L. A. Hazlehurst, A. A. Shtil, and W. S. Dalton, “Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines,” Blood, vol. 93, no. 5, pp. 1658–1667, 1999. View at Google Scholar · View at Scopus
  9. J. H. Uhm, N. P. Dooley, A. P. Kyritsis, J. S. Rao, and C. L. Gladson, “Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death,” Clinical Cancer Research, vol. 5, no. 6, pp. 1587–1594, 1999. View at Google Scholar · View at Scopus
  10. N. Cordes, “Integrin-mediated cell-matrix interactions for prosurvivaland antiapoptotic signaling after genotoxic injury,” Cancer Letters, vol. 242, no. 1, pp. 11–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Hehlgans, M. Haase, and N. Cordes, “Signalling via integrins: implications for cell survival and anticancer strategies,” Biochimica et Biophysica Acta, vol. 1775, no. 1, pp. 163–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. B. Meads, R. A. Gatenby, and W. S. Dalton, “Environment-mediated drug resistance: a major contributor to minimal residual disease,” Nature Reviews Cancer, vol. 9, no. 9, pp. 665–674, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. B. Meads, L. A. Hazlehurst, and W. S. Dalton, “The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance,” Clinical Cancer Research, vol. 14, no. 9, pp. 2519–2526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. H. Shain and W. S. Dalton, “Environmental-mediated drug resistance: a target for multiple myeloma therapy,” Expert Review of Hematology, vol. 2, no. 6, pp. 649–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Aoudjit and K. Vuori, “Engagement of the alpha2beta1 integrin inhibits Fas ligand expression and activation-induced cell death in T cells in a focal adhesion kinase-dependent manner,” Blood, vol. 95, no. 6, pp. 2044–2051, 2000. View at Google Scholar · View at Scopus
  16. M. Fornaro, J. Plescia, S. Chheang et al., “Fibronectin protects prostate cancer cells from tumor necrosis factor-α-induced apoptosis via the AKT/survivin pathway,” Journal of Biological Chemistry, vol. 278, no. 50, pp. 50402–50411, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Gendron, J. Couture, and F. Aoudjit, “Integrin α2β1 inhibits Fas-mediated apoptosis in T lymphocytes by protein phosphatase 2A-dependent activation of the MAPK/ERK pathway,” Journal of Biological Chemistry, vol. 278, no. 49, pp. 48633–48643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Lane, N. Goncharenko-Khaider, C. Rancourt, and A. Piché, “Ovarian cancer ascites protects from TRAIL-induced cell death through αvβ5 integrin-mediated focal adhesion kinase and Akt activation,” Oncogene, vol. 29, no. 24, pp. 3519–3531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. H. Shain, T. H. Landowski, and W. S. Dalton, “Adhesion-mediated intracellular redistribution of c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long confers resistance to CD95-induced apoptosis in hematopoietic cancer cell lines,” Journal of Immunology, vol. 168, no. 5, pp. 2544–2553, 2002. View at Google Scholar · View at Scopus
  20. P. H. Krammer, R. Arnold, and I. N. Lavrik, “Life and death in peripheral T cells,” Nature Reviews Immunology, vol. 7, no. 7, pp. 532–542, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. S. Ricci and W. X. Zong, “Chemotherapeutic approaches for targeting cell death pathways,” Oncologist, vol. 11, no. 4, pp. 342–357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Strasser, H. Puthalakath, L. A. O'Reilly, and P. Bouillet, “What do we know about the mechanisms of elimination of autoreactive T and B cells and what challenges remain,” Immunology and Cell Biology, vol. 86, no. 1, pp. 57–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Kroemer and J. C. Reed, “Mitochondrial control of cell death,” Nature Medicine, vol. 6, no. 5, pp. 513–519, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. J.-C. Martinou and R. Youle, “Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics,” Developmental Cell, vol. 21, no. 1, pp. 92–101, 2011. View at Publisher · View at Google Scholar
  25. K. C. Zimmermann, C. Bonzon, and D. R. Green, “The machinery of programmed cell death,” Pharmacology and Therapeutics, vol. 92, no. 1, pp. 57–70, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Fulda, “Tumor resistance to apoptosis,” International Journal of Cancer, vol. 124, no. 3, pp. 511–515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Fulda and K. M. Debatin, “Targeting apoptosis pathways in cancer therapy,” Current Cancer Drug Targets, vol. 4, no. 7, pp. 569–576, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. R. O. Hynes, “Integrins: bidirectional, allosteric signaling machines,” Cell, vol. 110, no. 6, pp. 673–687, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. R. C. Liddington and M. H. Ginsberg, “Integrin activation takes shape,” Journal of Cell Biology, vol. 158, no. 5, pp. 833–839, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Vuori, “Integrin signaling: tyrosine phosphorylation events in focal adhesions,” Journal of Membrane Biology, vol. 165, no. 3, pp. 191–199, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. G. E. Hannigan, P. C. McDonald, M. P. Walsh, and S. Dedhar, “Integrin-linked kinase: not so pseudo after all,” Oncogene, vol. 30, no. 43, pp. 4375–4385, 2011. View at Publisher · View at Google Scholar
  32. S. K. Mitra and D. D. Schlaepfer, “Integrin-regulated FAK-Src signaling in normal and cancer cells,” Current Opinion in Cell Biology, vol. 18, no. 5, pp. 516–523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Horbinski, C. Mojesky, and N. Kyprianou, “Live free or die: tales of homeless (cells) in cancer,” American Journal of Pathology, vol. 177, no. 3, pp. 1044–1052, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. D. G. Stupack and D. A. Cheresh, “Get a ligand, get a life: integrins, signaling and cell survival,” Journal of Cell Science, vol. 115, no. 19, pp. 3729–3738, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Guo and F. G. Giancotti, “Integrin signalling during tumour progression,” Nature Reviews Molecular Cell Biology, vol. 5, no. 10, pp. 816–826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. C. Loftus, J. W. Smith, and M. H. Ginsberg, “Integrin-mediated cell adhesion: the extracellular face,” Journal of Biological Chemistry, vol. 269, no. 41, pp. 25235–25238, 1994. View at Google Scholar · View at Scopus
  37. F. Aoudjit and K. Vuori, “Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells,” Oncogene, vol. 20, no. 36, pp. 4995–5004, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. J. M. Rae, C. J. Creighton, J. M. Meck, B. R. Haddad, and M. D. Johnson, “MDA-MB-435 cells are derived from M14 Melanoma cells—a loss for breast cancer, but a boon for melanoma research,” Breast Cancer Research and Treatment, vol. 104, no. 1, pp. 13–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Cordes, M. A. Blaese, L. Plasswilm, H. P. Rodemann, and D. Van Beuningen, “Fibronectin and laminin increase resistance to ionizing radiation and the cytotoxic drug Ukrain® in human tumour and normal cells in vitro,” International Journal of Radiation Biology, vol. 79, no. 9, pp. 709–720, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. X. H. Yang, L. M. Flores, Q. Li et al., “Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists,” Cancer Research, vol. 70, no. 6, pp. 2256–2263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Gutierrez and R. Schiff, “HER2: biology, detection, and clinical implications,” Archives of Pathology and Laboratory Medicine, vol. 135, no. 1, pp. 55–62, 2011. View at Google Scholar
  42. D. Lesniak, Y. Xu, J. Deschenes et al., “β1-integrin circumvents the antiproliferative effects of trastuzumab in human epidermal growth factor receptor-2-positive breast cancer,” Cancer Research, vol. 69, no. 22, pp. 8620–8628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Spangenberg, E. U. Lausch, T. M. Trost et al., “ERBB2-mediated transcriptional up-regulation of the α5β1 integrin fibronectin receptor promotes tumor cell survival under adverse conditions,” Cancer Research, vol. 66, no. 7, pp. 3715–3725, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Folgiero, P. Avetrani, G. Bon et al., “Induction of ErbB-3 expression by α6β4 integrin contributes to tamoxifen resistance in ERβ-1-negative breast carcinomas,” PLoS One, vol. 3, no. 2, article e1592, 2008. View at Publisher · View at Google Scholar
  45. A. Lundström, J. Holmbom, C. Lindqvist, and T. Nordström, “The role of α2β1 and α3β1 integrin receptors in the initial anchoring of MDA-MB-231 human breast cancer cells to cortical bone matrix,” Biochemical and Biophysical Research Communications, vol. 250, no. 3, pp. 735–740, 1998. View at Publisher · View at Google Scholar
  46. G. van der Pluijm, H. Vloedgraven, S. Papapoulos et al., “Attachment characteristics and involvement of integrins in adhesion of breast cancer cell lines to extracellular bone matrix components,” Laboratory Investigation, vol. 77, no. 6, pp. 665–675, 1997. View at Google Scholar · View at Scopus
  47. N. E. Ramirez, Z. Zhang, A. Madamanchi et al., “The α2β1 integrin is a metastasis suppressor in mouse models and human cancer,” Journal of Clinical Investigation, vol. 121, no. 1, pp. 226–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. Ö. D. Işeri, M. D. Kars, F. Arpaci, and U. Gündüz, “Gene expression analysis of drug-resistant MCF-7 cells: implications for relation to extracellular matrix proteins,” Cancer Chemotherapy and Pharmacology, vol. 65, no. 3, pp. 447–455, 2010. View at Publisher · View at Google Scholar
  49. E. S. Yao, H. Zhang, Y. Y. Chen et al., “Increased β1 integrin is associated with decreased survival in invasive breast cancer,” Cancer Research, vol. 67, no. 2, pp. 659–664, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. C. C. Park, H. J. Zhang, E. S. Yao, C. J. Park, and M. J. Bissell, “β1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts,” Cancer Research, vol. 68, no. 11, pp. 4398–4405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. P. S. Hodkinson, T. Elliott, W. S. Wong et al., “ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through β1 integrin-dependent activation of PI3-kinase,” Cell Death and Differentiation, vol. 13, no. 10, pp. 1776–1788, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. R. C. Buttery, R. C. Rintoul, and T. Sethi, “Small cell lung cancer: the importance of the extracellular matrix,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 7, pp. 1154–1160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. R. C. Rintoul and T. Sethi, “Extracellular matrix regulation of drug resistance in small-cell lung cancer,” Clinical Science, vol. 102, no. 4, pp. 417–424, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Oshita, Y. Kameda, M. Ikehara et al., “Increased expression of integrin β1 is a poor prognostic factor in small-cell lung cancer,” Anticancer Research, vol. 22, no. 2 B, pp. 1065–1070, 2002. View at Google Scholar · View at Scopus
  55. F. Oshita, Y. Kameda, N. Hamanaka et al., “High expression of integrin β1 and p53 is a greater poor prognostic factor than clinical stage in small-cell lung cancer,” American Journal of Clinical Oncology, vol. 27, no. 3, pp. 215–219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Ju, C. Zhou, W. Li, and L. Yan, “Integrin beta1 over-expression associates with resistance to tyrosine kinase inhibitor gefitinib in non-small cell lung cancer,” Journal of Cellular Biochemistry, vol. 111, no. 6, pp. 1565–1574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. F. Thomas, J. M. P. Holly, R. Persad, A. Bahl, and C. M. Perks, “Fibronectin confers survival against chemotherapeutic agents but not against radiotherapy in DU145 prostate cancer cells: involvement of the insulin like growth factor-1 receptor,” Prostate, vol. 70, no. 8, pp. 856–865, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. V. Bhatia, R. V. Mula, N. L. Weigel, and M. Falzon, “Parathyroid hormone-related protein regulates cell survival pathways via integrin α6β4-mediated activation of phosphatidylinositol 3-kinase/Akt signaling,” Molecular Cancer Research, vol. 7, no. 7, pp. 1119–1131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Miyamoto, T. Murakami, K. Tsuchida, H. Sugino, H. Miyake, and S. Tashiro, “Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins,” Pancreas, vol. 28, no. 1, pp. 38–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. W. Huanwen, L. Zhiyong, S. Xiaohua, R. Xinyu, W. Kai, and L. Tonghua, “Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines,” Molecular Cancer, vol. 8, article 125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. T. S. Mantoni, S. Lunardi, O. Al-Assar, A. Masamune, and T. B. Brunner, “Pancreatic stellate cells radioprotect pancreatic cancer cells through β1-integrin signaling,” Cancer Research, vol. 71, no. 10, pp. 3453–3458, 2011. View at Publisher · View at Google Scholar
  62. T. Armstrong, G. Packham, L. B. Murphy et al., “Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma,” Clinical Cancer Research, vol. 10, no. 21, pp. 7427–7437, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Mahadevan and D. D. Von Hoff, “Tumor-stroma interactions in pancreatic ductal adenocarcinoma,” Molecular Cancer Therapeutics, vol. 6, no. 4, pp. 1186–1197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. S. S. Müerköster, J. Kötteritzsch, C. Geismann et al., “α5-integrin is crucial for L1CAM-mediated chemoresistance in pancreatic adenocarcinoma,” International Journal of Oncology, vol. 34, no. 1, pp. 243–253, 2009. View at Publisher · View at Google Scholar
  65. H. Kiefel, M. Pfeifer, S. Bondong, J. Hazin, and P. Altevogt, “Linking L1CAM-mediated signaling to NF-κB activation,” Trends in Molecular Medicine, vol. 17, no. 4, pp. 178–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Kiefel, S. Bondong, N. Erbe-Hoffmann et al., “L1CAM-integrin interaction induces constitutive NF-κB activation in pancreatic adenocarcinoma cells by enhancing IL-1β expression,” Oncogene, vol. 29, no. 34, pp. 4766–4778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. J. T. Pribila, A. C. Quale, K. L. Mueller, and Y. Shimizu, “Integrins and T cell-mediated immunity,” Annual Review of Immunology, vol. 22, pp. 157–180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Kamiguchi, K. Tachibana, S. Iwata, Y. Ohashi, and C. Morimoto, “Cas-L is required for β1 integrin-mediated costimulation in human T cells,” Journal of Immunology, vol. 163, no. 2, pp. 563–568, 1999. View at Google Scholar · View at Scopus
  69. J. E. Maguire, K. M. Danahey, L. C. Burkly, and G. A. Van Seventer, “T cell receptor- and β1 integrin-mediated signals synergize to induce tyrosine phosphorylation of focal adhesion kinase (pp125(FAK)) in human T cells,” Journal of Experimental Medicine, vol. 182, no. 6, pp. 2079–2090, 1995. View at Publisher · View at Google Scholar · View at Scopus
  70. B. Ybarrondo, A. M. O'Rourke, J. B. Mccarthy, and M. F. Mescher, “Cytotoxic T-lymphocyte interaction with fibronectin and vitronectin: activated adhesion and cosignalling,” Immunology, vol. 91, no. 2, pp. 186–192, 1997. View at Google Scholar · View at Scopus
  71. M. L. Dustin and A. R. De Fougerolles, “Reprograming T cells: the role of extracellular matrix in coordination of T cell activation and migration,” Current Opinion in Immunology, vol. 13, no. 3, pp. 286–290, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Hogg, M. Laschinger, K. Giles, and A. McDowall, “T-cell integrins: more than just sticking points,” Journal of Cell Science, vol. 116, no. 23, pp. 4695–4705, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. W. H. Rao, J. M. Hales, and R. D. R. Camp, “Potent costimulation of effector T lymphocytes by human collagen type I,” Journal of Immunology, vol. 165, no. 9, pp. 4935–4940, 2000. View at Google Scholar · View at Scopus
  74. M. Boisvert, N. Chetoui, S. Gendron, and F. Aoudjit, “Alpha2beta1 integrin is the major collagen-binding integrin expressed on human Th17 cells,” European Journal of Immunology, vol. 40, no. 10, pp. 2710–2719, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Boisvert, S. Gendron, N. Chetoui, and F. Aoudjit, “Alpha2beta1 integrin signaling augments T cell receptor-dependent production of interferon-gamma in human T cells,” Molecular Immunology, vol. 44, no. 15, pp. 3732–3740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Ben-Horin and I. Bank, “The role of very late antigen-1 in immune-mediated inflammation,” Clinical Immunology, vol. 113, no. 2, pp. 119–129, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. M. E. Hemler, D. Glass, J. S. Coblyn, and J. G. Jacobson, “Very late activation antigens on rheumatoid synovial fluid T lymphocytes. Association with stages of T cell activation,” Journal of Clinical Investigation, vol. 78, no. 3, pp. 696–702, 1986. View at Google Scholar · View at Scopus
  78. I. Tsunoda, E. J. Terry, B. J. Marble, E. Lazarides, C. Woods, and R. S. Fujinami, “Modulation of experimental autoimmune encephalomyelitis by VLA-2 blockade,” Brain Pathology, vol. 17, no. 1, pp. 45–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. A. R. De Fougerolles, A. G. Sprague, C. L. Nickerson-Nutter et al., “Regulation of inflammation by collagen-binding integrins α1β1 and α2β1 in models of hypersensitivity and arthritis,” Journal of Clinical Investigation, vol. 105, no. 6, pp. 721–729, 2000. View at Google Scholar · View at Scopus
  80. A. Ianaro, C. Cicala, A. Calignano et al., “Anti-very late antigen-1 monoclonal antibody modulates the development of secondary lesion and T-cell response in experimental arthritis,” Laboratory Investigation, vol. 80, no. 1, pp. 73–80, 2000. View at Google Scholar · View at Scopus
  81. B. M. C. Chan, J. G. P. Wong, A. Rao, and M. E. Hemler, “T cell receptor-dependent, antigen-specific stimulation of a murine T cell clone induces a transient, VLA protein-mediated binding to extracellular matrix,” Journal of Immunology, vol. 147, no. 2, pp. 398–404, 1991. View at Google Scholar · View at Scopus
  82. J. Ivanoff, T. Talme, and K. G. Sundqvist, “The role of chemokines and extracellular matrix components in the migration of T lymphocytes into three-dimensional substrata,” Immunology, vol. 114, no. 1, pp. 53–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. J. L. Mobley, E. Ennis, and Y. Shimizu, “Differential activation-dependent regulation of integrin function in cultured human T-leukemic cell lines,” Blood, vol. 83, no. 4, pp. 1039–1050, 1994. View at Google Scholar · View at Scopus
  84. Y. Nojima, K. Tachibana, T. Sato, S. F. Schlossman, and C. Morimoto, “Focal adhesion kinase (pp125(FAK)) is tyrosine phosphorylated after engagement of α4β1 and α5β1 integrins on human T-lymphoblastic cells,” Cellular Immunology, vol. 161, no. 1, pp. 8–13, 1995. View at Publisher · View at Google Scholar · View at Scopus
  85. I. Bank, E. Rapman, R. Shapiro et al., “The epidermotropic mycosis fungoides associated α1β1 integrin (VLA-1, CD49a/CD29) is primarily a collagen IV receptor on malignant T cells,” Journal of Cutaneous Pathology, vol. 26, no. 2, pp. 65–71, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. W. Sterry, V. Mielke, U. Konter, I. Kellner, and W. H. Boehncke, “Role of β1-integrins in epidermotropism of malignant T cells,” American Journal of Pathology, vol. 141, no. 4, pp. 855–860, 1992. View at Google Scholar · View at Scopus
  87. A. L. Feldman, M. Law, E. D. Remstein et al., “Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas,” Leukemia, vol. 23, no. 3, pp. 574–580, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. B. Stark, S. Avigad, D. Luria et al., “Bone marrow Minimal Disseminated Disease (MDD) and Minimal Residual Disease (MRD) in childhood T-cell lymphoblastic lymphoma stage III, detected by Flow Cytometry (FC) and Real-Time Quantitative Polymerase Chain Reaction (RQ-PCR),” Pediatric Blood and Cancer, vol. 52, no. 1, pp. 20–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Ninomiya, A. Abe, A. Katsumi et al., “Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice,” Leukemia, vol. 21, no. 1, pp. 136–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. R. Hamilton and F. R. Campbell, “Immunochemical localization of extracellular materials in bone marrow of rats,” Anatomical Record, vol. 231, no. 2, pp. 218–224, 1991. View at Google Scholar · View at Scopus
  91. G. Klein, “The extracellular matrix of the hematopoietic microenvironment,” Experientia, vol. 51, no. 9-10, pp. 914–926, 1995. View at Publisher · View at Google Scholar · View at Scopus
  92. N. E. Annels, A. J. Willemze, V. H. J. Van Der Velden et al., “Possible link between unique chemokine and homing receptor expression at diagnosis and relapse location in a patient with childhood T-ALL,” Blood, vol. 103, no. 7, pp. 2806–2808, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Aoudjit, E. F. Potworowski, T. A. Springer, and Y. St-Pierre, “Protection from lymphoma cell metastasis in ICAM-1 mutant mice: a posthoming event,” Journal of Immunology, vol. 161, no. 5, pp. 2333–2338, 1998. View at Google Scholar · View at Scopus
  94. F. Aoudjit, E. F. Potworowski, and Y. St-Pierre, “The metastatic characteristics of murine lymphoma cell lines in vivo are manifested after target organ invasion,” Blood, vol. 91, no. 2, pp. 623–629, 1998. View at Google Scholar · View at Scopus
  95. D. P. Dialynas, M. J. Lee, D. P. Gold et al., “Preconditioning with fetal cord blood facilitates engraftment of primary childhood T-cell acute lymphoblastic leukemia in immunodeficient mice,” Blood, vol. 97, no. 10, pp. 3218–3225, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. S. M. Frisch, “Evidence for a function of death-receptor-related, death-domain-containing proteins in anoikis,” Current Biology, vol. 9, no. 18, pp. 1047–1049, 1999. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Rytömaa, L. M. Martins, and J. Downward, “Involvement of FADD and caspase-8 signalling in detachment-induced apoptosis,” Current Biology, vol. 9, no. 18, pp. 1043–1046, 1999. View at Publisher · View at Google Scholar · View at Scopus
  98. D. R. Green, N. Droin, and M. Pinkoski, “Activation-induced cell death in T cells,” Immunological Reviews, vol. 193, pp. 70–81, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. M. V. Richter and D. J. Topham, “The α1β1 integrin and TNF receptor II protect airway CD8+ effector T cells from apoptosis during influenza infection,” Journal of Immunology, vol. 179, no. 8, pp. 5054–5063, 2007. View at Google Scholar · View at Scopus
  100. S. M. Frisch and E. Ruoslahti, “Integrins and anoikis,” Current Opinion in Cell Biology, vol. 9, no. 5, pp. 701–706, 1997. View at Publisher · View at Google Scholar · View at Scopus
  101. F. Aoudjit and K. Vuori, “Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-Flip and implications for anoikis,” Journal of Cell Biology, vol. 153, no. 3, pp. 633–643, 2001. View at Google Scholar · View at Scopus
  102. K. Rosen, W. Shi, B. Calabretta, and J. Filmus, “Cell detachment triggers p38 mitogen-activated protein kinase-dependent overexpression of fas ligand: a novel mechanism of anoikis of intestinal epithelial cells,” Journal of Biological Chemistry, vol. 277, no. 48, pp. 46123–46130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. R. N. Samara, L. M. Laguinge, and J. M. Jessup, “Carcinoembryonic antigen inhibits anoikis in colorectal carcinoma cells by interfering with Trail-R2 (DR5) signaling,” Cancer Research, vol. 67, no. 10, pp. 4774–4782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. T. H. Holmström, I. Schmitz, T. S. Söderström et al., “MAPK/ERK signaling in activated T cells inhibits CD95/Fas-mediated apoptosis downstream of DISC assembly,” EMBO Journal, vol. 19, no. 20, pp. 5418–5428, 2000. View at Google Scholar
  105. X. W. Meng, J. Chandra, D. Loegering et al., “Central role of Fas-associated death domain protein in apoptosis induction by the mitogen-activated protein kinase kinase inhibitor CI-1040 (PD184352) in acute lymphocytic leukemia cells in vitro,” Journal of Biological Chemistry, vol. 278, no. 47, pp. 47326–47339, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. N. Chetoui, S. Gendron, E. Chamoux, and F. Aoudjit, “Collagen type I-mediated activation of ERK/MAP Kinase is dependent on Ras, Raf-1 and protein phosphatase 2A in Jurkat T cells,” Molecular Immunology, vol. 43, no. 10, pp. 1687–1693, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Jaumot and J. F. Hancock, “Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions,” Oncogene, vol. 20, no. 30, pp. 3949–3958, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Kubicek, M. Pacher, D. Abraham, K. Podar, M. Eulitz, and M. Baccarini, “Dephosphorylation of Ser-259 regulates Raf-1 membrane association,” Journal of Biological Chemistry, vol. 277, no. 10, pp. 7913–7919, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. K. Bijian, L. Zhang, and S. H. Shen, “Collagen-mediated survival signaling is modulated by CD45 in Jurkat T cells,” Molecular Immunology, vol. 44, no. 15, pp. 3682–3690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. S. S. Winter, J. J. Sweatman, M. B. Lawrence, T. H. Rhoades, A. L. Hart, and R. S. Larson, “Enhanced T-lineage acute lymphoblastic leukaemia cell survival on bone marrow stroma requires involvement of LFA-1 and ICAM-1,” British Journal of Haematology, vol. 115, no. 4, pp. 862–871, 2001. View at Publisher · View at Google Scholar · View at Scopus
  111. D. Guo, J. Ye, L. Li, J. Dai, D. Ma, and C. Ji, “Down-regulation of Notch-1 increases co-cultured Jurkat cell sensitivity to chemotherapy,” Leukemia and Lymphoma, vol. 50, no. 2, pp. 270–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Gendron, J. Couture, and F. Aoudjit, “Collagen type I signalling reduces the expression and the function of human receptor activator of nuclear factor -κB ligand (RANKL) in T lymphocytes,” European Journal of Immunology, vol. 35, no. 12, pp. 3673–3682, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. L. E. Theill, W. J. Boyle, and J. M. Penninger, “RANK-L and RANK: T cells, bone loss, and mammalian evolution,” Annual Review of Immunology, vol. 20, pp. 795–823, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. L. Galibert, M. E. Tometsko, D. M. Andersen, D. Cosman, and W. C. Dougall, “The involvement of multiple tumor necrosis factor receptor (TNFR)- associated factors in the signaling mechanisms of receptor activator of NF- κB, a member of the TNFR superfamily,” Journal of Biological Chemistry, vol. 273, no. 51, pp. 34120–34127, 1998. View at Publisher · View at Google Scholar · View at Scopus
  115. A. C. Bharti and B. B. Aggarwal, “Ranking the role of RANK ligand in apoptosis,” Apoptosis, vol. 9, no. 6, pp. 677–690, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. A. C. Bharti, Y. Takada, S. Shishodia, and B. B. Aggarwal, “Evidence that receptor activator of nuclear factor (NF)-κB ligand can suppress cell proliferation and induce apoptosis through activation of a NF-κB-independent and TRAF6-dependent mechanism,” Journal of Biological Chemistry, vol. 279, no. 7, pp. 6065–6076, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. I. Müller, S. M. Pfister, U. Grohs et al., “Receptor activator of nuclear factor κB ligand plays a nonredundant role in doxorubicin-induced apoptosis,” Cancer Research, vol. 63, no. 8, pp. 1772–1775, 2003. View at Google Scholar
  118. D. Estrugo, A. Fischer, F. Hess, H. Scherthan, C. Belka, and N. Cordes, “Ligand bound β1 integrins inhibit procaspase-8 for mediating cell adhesion-mediated drug and radiation resistance in human leukemia cells,” PLoS One, vol. 2, no. 3, article e269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. A. L. Cleaver, A. H. Beesley, M. J. Firth et al., “Gene-based outcome prediction in multiple cohorts of pediatric T-cell acute lymphoblastic leukemia: a Children's oncology group study,” Molecular Cancer, vol. 9, article 105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. J. Ivaska and J. Heino, “Cooperation between integrins and growth factor receptors in signaling and endocytosis,” Annual Review of Cell and Developmental Biology, vol. 27, pp. 291–320, 2011. View at Publisher · View at Google Scholar
  121. T. N. Hartmann, J. A. Burger, A. Glodek, N. Fujii, and M. Burger, “CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells,” Oncogene, vol. 24, no. 27, pp. 4462–4471, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. A. V. Kurtova, A. T. Tamayo, R. J. Ford, and J. A. Burger, “Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting,” Blood, vol. 113, no. 19, pp. 4604–4613, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Pillozzi, M. Masselli, E. De Lorenzo et al., “Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers,” Blood, vol. 117, no. 3, pp. 902–914, 2011. View at Publisher · View at Google Scholar
  124. M. Buchner, C. Baer, G. Prinz et al., “Spleen tyrosine kinase inhibition prevents chemokine- and integrin-mediated stromal protective effects in chronic lymphocytic leukemia,” Blood, vol. 115, no. 22, pp. 4497–4506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. F. De Toni, C. Racaud-Sultan, G. Chicanne et al., “A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia,” Oncogene, vol. 25, no. 22, pp. 3113–3122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. J. A. Menendez, L. Vellon, I. Mehmi, P. K. Teng, D. W. Griggs, and R. Lupu, “A novel CYR61-triggered “CYR61-αvβ3 integrin loop” regulates breast cancer cell survival and chemosensitivity through activation of ERK1/ERK2 MAPK signaling pathway,” Oncogene, vol. 24, no. 5, pp. 761–779, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. J. D. Johnson, J. C. Edman, and W. J. Rutter, “Erratum: A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 22, article 10891, 1993. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Heino, M. Huhtala, J. Käpylä, and M. S. Johnson, “Evolution of collagen-based adhesion systems,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 2, pp. 341–348, 2009. View at Publisher · View at Google Scholar
  129. W. Vogel, “Discoidin domain receptors: structural relations and functional implications,” FASEB Journal, vol. 13, no. 8, supplement, pp. s77–s82, 1999. View at Google Scholar · View at Scopus
  130. W. F. Vogel, R. Abdulhussein, and C. E. Ford, “Sensing extracellular matrix: an update on discoidin domain receptor function,” Cellular Signalling, vol. 18, no. 8, pp. 1108–1116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. F. Alves, S. Saupe, M. Ledwon, F. Schaub, W. Hiddemann, and W. F. Vogel, “Identification of two novel, kinase-deficient variants of discoidin domain receptor 1: differential expression in human colon cancer cell lines,” The FASEB Journal, vol. 15, no. 7, pp. 1321–1323, 2001. View at Google Scholar · View at Scopus
  132. W. Vogel, C. Brakebusch, R. Fässler, F. Alves, F. Ruggiero, and T. Pawson, “Discoidin domain receptor 1 is activated independently of β1 integrin,” Journal of Biological Chemistry, vol. 275, no. 8, pp. 5779–5784, 2000. View at Publisher · View at Google Scholar · View at Scopus
  133. C. E. Ford, S. K. Lau, C. Q. Zhu, T. Andersson, M. S. Tsao, and W. F. Vogel, “Expression and mutation analysis of the discoidin domain receptors 1 and 2 in non-small cell lung carcinoma,” British Journal of Cancer, vol. 96, no. 5, pp. 808–814, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. K. Rikova, A. Guo, Q. Zeng et al., “Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer,” Cell, vol. 131, no. 6, pp. 1190–1203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. J. Dejmek, K. Leandersson, J. Manjer et al., “Expression and signalling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival,” Clinical Cancer Research, vol. 11, no. 2 I, pp. 520–528, 2005. View at Google Scholar · View at Scopus
  136. V. A. Heinzelmann-Schwarz, M. Gardiner-Garden, S. M. Henshall et al., “Overexpression of the cell adhesion molecules DDR1, claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer,” Clinical Cancer Research, vol. 10, no. 13, pp. 4427–4436, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. J. Quan, T. Yahata, S. Adachi, K. Yoshihara, and K. Tanaka, “Identification of receptor tyrosine kinase, discoidin domain receptor 1 (DDR1), as a potential biomarker for serous ovarian cancer,” International Journal of Molecular Sciences, vol. 12, no. 2, pp. 971–982, 2011. View at Publisher · View at Google Scholar
  138. R. Ram, G. Lorente, K. Nikolich, R. Urfer, E. Foehr, and U. Nagavarapu, “Discoidin domain receptor-1a (DDR1a) promotes glioma cell invasion and adhesion in association with matrix metalloproteinase-2,” Journal of Neuro-Oncology, vol. 76, no. 3, pp. 239–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  139. H. L. Weiner, H. Huang, D. Zagzag, H. Boyce, R. Lichtenbaum, and E. B. Ziff, “Consistent and selective expression of the discoidin domain receptor-1 tyrosine kinase in human brain tumors,” Neurosurgery, vol. 47, no. 6, pp. 1400–1409, 2000. View at Google Scholar · View at Scopus
  140. L. Castro-Sanchez, A. Soto-Guzman, M. Guaderrama-Diaz, P. Cortes-Reynosa, and E. P. Salazar, “Role of DDR1 in the gelatinases secretion induced by native type IV collagen in MDA-MB-231 breast cancer cells,” Clinical and Experimental Metastasis, vol. 28, no. 5, pp. 463–477, 2011. View at Publisher · View at Google Scholar
  141. H. S. Park, K. R. Kim, H. J. Lee et al., “Overexpression of discoidin domain receptor 1 increases the migration and invasion of hepatocellular carcinoma cells in association with matrix metalloproteinase,” Oncology Reports, vol. 18, no. 6, pp. 1435–1441, 2007. View at Google Scholar · View at Scopus
  142. H. Davies, C. Hunter, R. Smith et al., “Somatic mutations of the protein kinase gene family in human lung cancer,” Cancer Research, vol. 65, no. 17, pp. 7591–7595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. M. H. Tomasson, Z. Xiang, R. Walgren et al., “Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia,” Blood, vol. 111, no. 9, pp. 4797–4808, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. P. P. Ongusaha, J. I. Kim, L. Fang et al., “p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop,” EMBO Journal, vol. 22, no. 6, pp. 1289–1301, 2003. View at Publisher · View at Google Scholar · View at Scopus
  145. H.-G. Kim, S.-Y. Hwang, S. A. Aaronson, A. Mandinova, and S. W. Lee, “DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation,” Journal of Biological Chemistry, vol. 286, no. 20, pp. 17672–17681, 2011. View at Publisher · View at Google Scholar
  146. S. Das, P. P. Ongusaha, Y. S. Yang, J. M. Park, S. A. Aaronson, and S. W. Lee, “Discoidin domain receptor 1 receptor tyrosine kinase induces cyclooxygenase-2 and promotes chemoresistance through nuclear factor-κB pathway activation,” Cancer Research, vol. 66, no. 16, pp. 8123–8130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  147. D. Barbone, T. M. Yang, J. R. Morgan, G. Gaudino, and V. C. Broaddus, “Mammalian target of rapamycin contributes to the acquired apoptotic resistance of human mesothelioma multicellular spheroids,” Journal of Biological Chemistry, vol. 283, no. 19, pp. 13021–13030, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. A. Frankel, R. Buckman, and R. S. Kerbel, “Abrogation of Taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids,” Cancer Research, vol. 57, no. 12, pp. 2388–2393, 1997. View at Google Scholar · View at Scopus
  149. S. K. Green, A. Frankel, and R. S. Kerbel, “Adhesion-dependent multicellular drug resistance,” Anti-Cancer Drug Design, vol. 14, no. 2, pp. 153–168, 1999. View at Google Scholar · View at Scopus
  150. A. Ivascu and M. Kubbies, “Diversity of cell-mediated adhesions in breast cancer spheroids,” International Journal of Oncology, vol. 31, no. 6, pp. 1403–1413, 2007. View at Google Scholar · View at Scopus
  151. C. L. Li, T. Tian, K. J. Nan et al., “Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro,” Oncology Reports, vol. 20, no. 6, pp. 1465–1471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. V. M. Weaver, S. Lelièvre, J. N. Lakins et al., “β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium,” Cancer Cell, vol. 2, no. 3, pp. 205–216, 2002. View at Publisher · View at Google Scholar
  153. S. Dangi-Garimella, S. B. Krantz, M. R. Barron et al., “Three-dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2,” Cancer Research, vol. 71, no. 3, pp. 1019–1028, 2011. View at Publisher · View at Google Scholar
  154. T. Furukawa, T. Kubota, M. Watanabe et al., “Increased drug resistance of cultured human cancer cell lines in three- dimensional cellular growth assay using collagen gel matrix,” Journal of Surgical Oncology, vol. 49, no. 2, pp. 86–92, 1992. View at Google Scholar · View at Scopus
  155. M. Kawamura, M. Gika, T. Abiko et al., “Clinical evaluation of chemosensitivity testing for patients with unresectable non-small cell lung cancer (NSCLC) using collagen gel droplet embedded culture drug sensitivity test (CD-DST),” Cancer Chemotherapy and Pharmacology, vol. 59, no. 4, pp. 507–513, 2007. View at Publisher · View at Google Scholar
  156. E. Millerot-Serrurot, M. Guilbert, N. Fourré et al., “3D collagen type I matrix inhibits the antimigratory effect of doxorubicin,” Cancer Cell International, vol. 10, article 26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. I. F. Tannock, C. M. Lee, J. K. Tunggal, D. S. M. Cowan, and M. J. Egorin, “Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy,” Clinical Cancer Research, vol. 8, no. 3, pp. 878–884, 2002. View at Google Scholar · View at Scopus
  158. C. H. Heldin, K. Rubin, K. Pietras, and A. Östman, “High interstitial fluid pressure—an obstacle in cancer therapy,” Nature Reviews Cancer, vol. 4, no. 10, pp. 806–813, 2004. View at Publisher · View at Google Scholar · View at Scopus
  159. J. R. Less, M. C. Posner, Y. Boucher, D. Borochovitz, N. Wolmark, and R. K. Jain, “Interstitial hypertension in human breast and colorectal tumors,” Cancer Research, vol. 52, no. 22, pp. 6371–6374, 1992. View at Google Scholar · View at Scopus
  160. S. D. Nathanson and L. Nelson, “Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma,” Annals of Surgical Oncology, vol. 1, no. 4, pp. 333–338, 1994. View at Google Scholar · View at Scopus
  161. Y. Boucher, J. M. Kirkwood, D. Opacic, M. Desantis, and R. K. Jain, “Interstitial hypertension in superficial metastatic melanomas in humans,” Cancer Research, vol. 51, no. 24, pp. 6691–6694, 1991. View at Google Scholar · View at Scopus
  162. B. D. Curti, W. J. Urba, W. G. Alvord et al., “Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: changes during treatment,” Cancer Research, vol. 53, no. 10, pp. 2204–2207, 1993. View at Google Scholar · View at Scopus
  163. R. Gutmann, M. Leunig, J. Feyh et al., “Interstitial hypertension in head and neck tumors in patients: correlation with tumor size,” Cancer Research, vol. 52, no. 7, pp. 1993–1995, 1992. View at Google Scholar · View at Scopus
  164. P. A. Netti, D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain, “Role of extracellular matrix assembly in interstitial transport in solid tumors,” Cancer Research, vol. 60, no. 9, pp. 2497–2503, 2000. View at Google Scholar · View at Scopus
  165. Y. Boucher, C. Brekken, P. A. Netti, L. T. Baxter, and R. K. Jain, “Intratumoral infusion of fluid: estimation of hydraulic conductivity and implications for the delivery of therapeutic agents,” British Journal of Cancer, vol. 78, no. 11, pp. 1442–1448, 1998. View at Google Scholar · View at Scopus
  166. J. Choi, K. Credit, K. Henderson et al., “Intraperitoneal immunotherapy for metastatic ovarian carcinoma: resistance of intratumoral collagen to antibody penetration,” Clinical Cancer Research, vol. 12, no. 6, pp. 1906–1912, 2006. View at Publisher · View at Google Scholar · View at Scopus
  167. M. Loeffler, J. A. Krüger, A. G. Niethammer, and R. A. Reisfeld, “Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1955–1962, 2006. View at Publisher · View at Google Scholar
  168. S. J. Ellis and G. Tanentzapf, “Integrin-mediated adhesion and stem-cell-niche interactions,” Cell and Tissue Research, vol. 339, no. 1, pp. 121–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. M. Zöller, “CD44: can a cancer-initiating cell profit from an abundantly expressed molecule?” Nature Reviews Cancer, vol. 11, no. 4, pp. 254–267, 2011. View at Publisher · View at Google Scholar
  170. J. D. Lathia, J. Gallagher, J. M. Heddleston et al., “Integrin Alpha 6 regulates glioblastoma stem cells,” Cell Stem Cell, vol. 6, no. 5, pp. 421–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. N. J. Maitland and A. T. Collins, “Prostate cancer stem cells: a new target for therapy,” Journal of Clinical Oncology, vol. 26, no. 17, pp. 2862–2870, 2008. View at Publisher · View at Google Scholar · View at Scopus
  172. L. Patrawala, T. Calhoun-Davis, R. Schneider-Broussard, and D. G. Tang, “Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+α2β1+ cell population is enriched in tumor-initiating cells,” Cancer Research, vol. 67, no. 14, pp. 6796–6805, 2007. View at Publisher · View at Google Scholar · View at Scopus
  173. C. van den Hoogen, G. van der Horst, H. Cheung, J. T. Buijs, R. C.M. Pelger, and G. van der Pluijm, “Integrin αv expression is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer,” American Journal of Pathology, vol. 179, no. 5, pp. 2559–2568, 2011. View at Publisher · View at Google Scholar
  174. E. M. Hurt, K. Chan, M. A. D. Serrat, S. B. Thomas, T. D. Veenstra, and W. L. Farrar, “Identification of vitronectin as an extrinsic inducer of cancer stem cell differentiation and tumor formation,” Stem Cells, vol. 28, no. 3, pp. 390–398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. M. Dean, T. Fojo, and S. Bates, “Tumour stem cells and drug resistance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 275–284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  176. M. Maugeri-Saccà, P. Vigneri, and R. De Maria, “Cancer stem cells and chemosensitivity,” Clinical Cancer Research, vol. 17, no. 15, pp. 4942–4947, 2011. View at Publisher · View at Google Scholar
  177. S. Misra, S. Ghatak, and B. P. Toole, “Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2,” Journal of Biological Chemistry, vol. 280, no. 21, pp. 20310–20315, 2005. View at Publisher · View at Google Scholar · View at Scopus
  178. M. Tamada, O. Nagano, S. Tateyama et al., “Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells,” Cancer Research, vol. 72, no. 6, pp. 1438–1448, 2012. View at Google Scholar
  179. K. To, A. Fotovati, K. M. Reipas et al., “Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-Renewal, mammosphere growth, and drug resistance,” Cancer Research, vol. 70, no. 7, pp. 2840–2851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. F. Yu, H. Deng, H. Yao, Q. Liu, F. Su, and E. Song, “Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells,” Oncogene, vol. 29, no. 29, pp. 4194–4204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. J. S. Desgrosellier and D. A. Cheresh, “Integrins in cancer: biological implications and therapeutic opportunities,” Nature Reviews Cancer, vol. 10, no. 1, pp. 9–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  182. M. F. Emmons, A. W. Gebhard, R. R. Nair et al., “Acquisition of resistance towards HYD1 correlates with a reduction in cleaved alpha 4 integrin expression and a compromised CAM-DR phenotype,” Molecular Cancer Therapeutics, vol. 10, no. 12, pp. 2257–2266, 2011. View at Google Scholar
  183. K. Noborio-Hatano, J. Kikuchi, M. Takatoku et al., “Bortezomib overcomes cell adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma,” Oncogene, vol. 28, no. 2, pp. 231–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  184. R. Schmidmaier, P. Baumann, M. Simsek, F. Dayyani, B. Emmerich, and G. Meinhardt, “The HMG-CoA reductase inhibitor simvastatin overcomes cell adhesion-mediated drug resistance in multiple myeloma by geranylgeranylation of Rho protein and activation of Rho kinase,” Blood, vol. 104, no. 6, pp. 1825–1832, 2004. View at Publisher · View at Google Scholar · View at Scopus