Table of Contents
Chemotherapy Research and Practice
Volume 2012, Article ID 858590, 7 pages
http://dx.doi.org/10.1155/2012/858590
Clinical Study

Bone Loss after Allogeneic Haematopoietic Stem Cell Transplantation: A Pilot Study on the Use of Zoledronic Acid

1Medical Department III, Ludwig-Maximilians University of Munich, Campus Großhadern, 81377 Munich, Germany
2Department of Radiology, Ludwig-Maximilians University of Munich, Campus Großhadern, 81377 Munich, Germany

Received 19 December 2011; Accepted 7 February 2012

Academic Editor: Piero Picci

Copyright © 2012 Andreas Hausmann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. A. Katz and S. Epstein, “Perspectives: posttransplantation bone disease,” Journal of Bone and Mineral Research, vol. 7, no. 2, pp. 123–126, 1992. View at Google Scholar
  2. A. D. Schimmer, M. D. Minden, and A. Keating, “Osteoporosis after blood and marrow transplantation: clinical aspects,” Biology of Blood and Marrow Transplantation, vol. 6, no. 2 A, pp. 175–181, 2000. View at Google Scholar
  3. J. M. Stern, K. M. Sullivan, S. M. Ott et al., “Bone density loss after allogeneic hematopoietic stem cell transplantation: a prospective study,” Biology of Blood and Marrow Transplantation, vol. 7, no. 5, pp. 257–264, 2001. View at Google Scholar · View at Scopus
  4. M. K. Gandhi, S. Lekamwasam, I. Inman et al., “Significant and persistent loss of bone mineral density in the femoral neck after haematopoietic stem cell transplantation: long-term follow-up of a prospective study,” British Journal of Haematology, vol. 121, no. 3, pp. 462–468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. S. Schulte and D. W. Beelen, “Bone loss following hematopoietic stem cell transplantation: a long-term follow-up,” Blood, vol. 103, no. 10, pp. 3635–3643, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. R. Ebeling, D. M. Thomas, B. Erbas, J. L. Hopper, J. Szer, and A. P. Grigg, “Mechanisms of bone loss following allogeneic and autologous hemopoietic stem cell transplantation,” Journal of Bone and Mineral Research, vol. 14, no. 3, pp. 342–350, 1999. View at Google Scholar · View at Scopus
  7. C. Carlo-Stella, A. Tabilio, E. Regazzi et al., “Effect of chemotherapy for acute myelogenous leukemia on hematopoietic and fibroblast marrow progenitors,” Bone Marrow Transplantation, vol. 20, no. 6, pp. 465–471, 1997. View at Google Scholar · View at Scopus
  8. A. Banfi, M. Podestà, L. Fazzuoli et al., “High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: a mechanism for post-bone marrow transplantation osteopenia,” Cancer, vol. 92, no. 9, pp. 2419–2428, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Takahashi, M. Sugimoto, Y. Kotoura, K. Sasai, M. Oka, and T. Yamamuro, “Long-term changes in the haversian systems following high-dose irradiation: an ultrastructural and quantitative histomorphological study,” Journal of Bone and Joint Surgery A, vol. 76, no. 5, pp. 722–738, 1994. View at Google Scholar · View at Scopus
  10. P. D. Delmas, F. Munoz, D. M. Black et al., “Effects of yearly zoledronic acid 5 mg on bone turnover markers and relation of PINP with fracture reduction in postmenopausal women with osteoporosis,” Journal of Bone and Mineral Research, vol. 24, no. 9, pp. 1544–1551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. L. H. Wang, H. Y. Ren, and Z. X. Qiu, “Analysis of clinically diagnosed upper gastrointestinal GVHD and effect of small-dose corticosteroid therapy after related hematopoietic stem cell transplantation,” Zhonghua Xue Ye Xue Za Zhi, vol. 32, no. 2, pp. 118–119, 2011. View at Google Scholar
  12. C. Castilla, J. A. Perez-Simon, F. M. Sanchez-Guijo et al., “Oral beclomethasone dipropionate for the treatment of gastrointestinal acute graft-versus-host disease (GVHD),” Biology of Blood and Marrow Transplantation, vol. 12, no. 9, pp. 936–941, 2006. View at Google Scholar
  13. A. Lipton, E. Small, F. Saad et al., “The new bisphosphonate, Zometa® (zoledronic acid), decreases skeletal complications in both osteolytic and osteoblastic lesions: a comparison to pamidronate,” Cancer Investigation, vol. 20, no. 2, pp. 45–54, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Tauchmanovà, P. Ricci, B. Serio et al., “Short-term zoledronic acid treatment increases bone mineral density and marrow clonogenic fibroblast progenitors after allogeneic stem cell transplantation,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 2, pp. 627–634, 2005. View at Publisher · View at Google Scholar
  15. L. Tauchmanovà, G. De Simone, T. Musella et al., “Effects of various antireabsorptive treatments on bone mineral density in hypogonadal young women after allogeneic stem cell transplantation,” Bone Marrow Transplantation, vol. 37, no. 1, pp. 81–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. B. D'Souza, A. P. Grigg, J. Szer, and P. R. Ebeling, “Zoledronic acid prevents bone loss after allogeneic haemopoietic stem cell transplantation,” Internal Medicine Journal, vol. 36, no. 9, pp. 600–603, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. S. Chae, J. G. Kim, J. H. Moon et al., “Pilot study on the use of zoledronic acid to prevent bone loss in allo-SCT recipients,” Bone Marrow Transplantation, vol. 44, no. 1, pp. 35–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Y. Lee, M. I. Kang, K. H. Baek et al., “The skeletal site-differential changes in bone mineral density following bone marrow transplantation: 3-year prospective study,” Journal of Korean Medical Science, vol. 17, no. 6, pp. 749–754, 2002. View at Google Scholar · View at Scopus